精英家教网 > 初中数学 > 题目详情
如图,AB是半圆O的直径,F是半圆上一点,D是OA上一点,过点D作ED⊥AB,交半圆于点C,交BF的延长线于点E,连接AC,AF,BC.
(1)求证:∠E=∠BCF;
(2)求证:BC2=BF•BE;
(3)若BC=12,CF=6,BF=9,求sin∠AFC.

【答案】分析:(1)根据圆周角定理可得∠1=∠2,由于AB是半圆O的直径,所以∠AFB=90°,即∠2+∠ABF=90°;由于ED⊥AB,所以∠E+∠ABF=90°;故∠E=∠2=∠1,即∠E=∠BCF.
(2)由(1)可知∠E=∠BCF,因为∠CBF=∠CBF,故△BCE∽△BFC;
根据相似三角形的性质即可求出BC2=BF•BE.
(3)将圆补全,利用割线定理解答.
解答:(1)证明:∵∠1=∠2,∠AFB=90°,
∴∠2+∠ABF=90°;
∵∠ABF+∠E=90°,
∴∠E=∠1,即∠E=∠BCF;

(2)证明:在△BCE与△BFC中,∠E=∠BCF,∠CBF=∠CBF;
故△BCE∽△BFC,∴=,即BC2=BF•BE;

(3)解:将半圆补全,延长ED,交⊙O于K.
∵BC2=BF•BE,BC=12,BF=9;
∴BE=
∴CE=××6==8;
∴EF=EB-FB=-9==7;
∵EF•EB=EC•EK,即7×=8×(8+2CD);解得CD=3.
在Rt△BCD中,BC=12;因此sin∠DBC===
又因为∠AFC=∠DBC,所以sin∠AFC=
点评:此题是一道圆与相似三角形结合的题目,主要考查同学们的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过几秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是半圆O的直径,OD是半径,BM切半圆于点B,OC与弦AD平行交BM于点C.
(1)求证:CD是半圆O的切线;
(2)若AB的长为4,点D在半圆O上运动,当AD的长为1时,求点A到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,点D是半圆上一动点,AB=10,AC=8,当△ACD是等腰三角形时,点D到AB的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,以OA为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E,则下列结论:①S△O′OE=
1
2
S△AOC2;②点D时AC的中点;③
AC
=2AD;④四边形O′DEO是菱形.其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,F为垂足,交AC于点C使∠BED=∠C.请判断直线AC与圆O的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案