分析 设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积-四边形ADEB′的面积,列式计算即可得解.
解答 解:如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,
∵$\left\{\begin{array}{l}{AE=AE}\\{AB′=AD}\end{array}\right.$,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=$\frac{1}{2}$×60°=30°,
∴DE=1×$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$,
∴阴影部分的面积=1×1-2×($\frac{1}{2}$×1×$\frac{\sqrt{3}}{3}$)=1-$\frac{\sqrt{3}}{3}$.
点评 本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:解答题
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减产值 | +5 | -2 | -4 | +13 | -10 | +16 | -9 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 81 | B. | 648 | C. | 700 | D. | 729 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com