精英家教网 > 初中数学 > 题目详情
7.$\sqrt{9}$+(-1)2017+(3.14-π)-(-$\frac{1}{2}$)-2

分析 首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.

解答 解:$\sqrt{9}$+(-1)2017+(3.14-π)-(-$\frac{1}{2}$)-2
=3-1+3.14-π-4
=1.14-π

点评 此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图是一圆锥的正视图、俯视图及相关数据,该圆锥的侧面展开图是一个扇形,则该扇形的圆心角的度数是(  )
A.60°B.90°C.120°D.180°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在数学课上,老师提出如下问题:
尺规作图:过直线外一点作已知直线的平行线.
已知:直线l及其外一点A.
求作:l的平行线,使它经过点A.
小云的作法如下:
(1)在直线l上任取一点B;
(2)以B为圆心,BA长为半径作弧,交直线l于点C;
(3)分别以A、C为圆心,BA长为半径作弧,两弧相交于点D;
(4)作直线AD.
直线AD即为所求.
小云作图的依据是四条边相等的四边形为菱形,菱形的对边平行.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)如图1所示,平行四边形纸片ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D是矩形.
(2)如图2所示,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
①求证:四边形AFF′D是菱形;
②求四边形AFF′D两条对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列一元二次方程没有实数根的是(  )
A.x2-2x-1=0B.x2+x+3=0C.x2-1=0D.x2+2x+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.现有A,B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外完全一样.
(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?若不公平,你认为怎样制定游戏规则,对甲乙双方才公平?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如果a+b=3,则代数式$\frac{{a}^{2}-{b}^{2}}{a}$÷$\frac{a-b}{2a}$的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.3D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图所示,每一个图形都是由形状相同的五角星按一定规律组成的,其中第①个图形中一共有9个五角星,第②个图形中一共有17个五角星,第③个图形中一共有25个五角星,…,按此规律排列,则第n个图形中五角星的颗数为8n+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=ax2-$\frac{3}{2}$x-2(a≠)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标;
(3)试探究:△ABC的外接圆的圆心位置,并求出圆心坐标.

查看答案和解析>>

同步练习册答案