精英家教网 > 初中数学 > 题目详情
在直角坐标系中,一次函数y=-2x+4图象与x轴交点为A,与y轴的交点为B,那么点B坐标为
 
;△AOB的面积为
 
分析:让一次函数的x为0可得点B的坐标;y=0可得点A的坐标,那么△AOB的面积=
1
2
×|A的横坐标×B的纵坐标|.
解答:解:∵一次函数y=-2x+4图象与x轴交点为A,与y轴的交点为B,
∴A(2,0);B(0,4),
∴△AOB的面积=
1
2
×|A的横坐标×B的纵坐标|=
1
2
×|2×4|=4,
故答案为(0,4);4.
点评:考查一次函数图象上点的坐标特征:与x轴交点的纵坐标为0;与y轴交点的横坐标为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,-3),则经两次跳动后,它不可能跳到的位置是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青神县一模)如图,在直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
13

(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)完成下面的证明:
已知:如图1,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
求证:∠EGF=90°.
证明:∵HG∥AB,(已知) 
∴∠1=∠3. (
两直线平行,内错角相等
两直线平行,内错角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
两直线平行,内错角相等
两直线平行,内错角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
两直线平行,同旁内角互补
两直线平行,同旁内角互补

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分线定义
角平分线定义

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分线定义
角平分线定义

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代换
等量代换
).即∠EGF=90°.
(2)如图2,已知∠ACB=90°,那么∠A的余角是哪个角呢?答:
∠B
∠B

小明用三角尺在这个三角形中画了一条高CD(点D是垂足),得到图3,
①请你帮小明在图中画出这条高;
②在图中,小明通过仔细观察、认真思考,找出了三对余角,你能帮小明把它们写出来吗?答:a
∠ACD与∠BCD
∠ACD与∠BCD
;b
∠A与∠ACD
∠A与∠ACD
;c
∠B与∠BCD
∠B与∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明还发现了另外两对相等的角,请你也仔细地观察、认真地思考分析,试一试,能发现吗?把它们写出来,并请说明理由.
(3)在直角坐标系中,第一次将△OAB变换成OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为
(16,3)
(16,3)
,B4的坐标为
(32,0)
(32,0)

②按以上规律将△OAB进行n次变换得到△AnBn,则可知An的坐标为
(2n,3)
(2n,3)
,Bn的坐标为
(2n+1,0)
(2n+1,0)

③可发现变换的过程中A、A1、A2、…、An纵坐标均为
3
3

查看答案和解析>>

科目:初中数学 来源:第24章《图形的相似》易错题集(08):24.6 图形与坐标(解析版) 题型:选择题

在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,-3),则经两次跳动后,它不可能跳到的位置是( )
A.(3,-2)
B.(4,-3)
C.(4,-2)
D.(1,-2)

查看答案和解析>>

科目:初中数学 来源:第3章《证明(三)》易错题集(09):3.1 平行四边形(解析版) 题型:选择题

在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,-3),则经两次跳动后,它不可能跳到的位置是( )
A.(3,-2)
B.(4,-3)
C.(4,-2)
D.(1,-2)

查看答案和解析>>

同步练习册答案