【题目】如图所示,AB=6,AC=3,∠BAC=60°,为⊙O上的一段弧,且∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为__________
【答案】
【解析】
连接AP、O、OA,分别以AB、AC所在直线为对称轴,作出P关于AB的对称点M,P关于AC的对称点N,连接MN,交AB于点E,交AC于点F,连接PE、PF,所以
AM=AP=AN,设AP=r,则MN=,所以PE+EF+PF=ME+EF+FN=MN=,即当AP最小时,PE+EF+PF可取最小值,由AP+OP≥OA可知AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,利用勾股定理即可求得AP的长度,即可解答.
连接BC,取AB的中点D,连接CD,如图1
则AD=BD=3
∴AD=BD=AC
∵∠BOC=60°
∴△ADC是等边三角形
∴CD=AC=3
∴CD=AB
∴∠ACB=90°
连接AP、O、OA,分别以AB、AC所在直线为对称轴,作出P关于AB的对称点M,P关于AC的对称点N,连接MN,交AB于点E,交AC于点F,连接PE、PF,
∴AM=AP=AN
∵∠MAB=∠PAB,∠NAC=∠PAC
∵∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°
∴∠MAN=120°
∴M、P、N在以A为圆心AP为半径的圆上
设AP=r,则MN=
∵PE=ME,PF=FN
∴PE+EF+PF=ME+EF+FN=MN=
∴当AP最小时,PE+EF+PF可取最小值
∵AP+OP≥OA
∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值
在Rt△ABC中,∵AB=6,AC=3,∠BAC=60°
∴BC=
∵∠BOC=60°,OB=OC
∴△OBC是等边三角形
∴OC=BC=,作OH⊥AC交AC的延长线于H
在Rt△OCH中,∵OC=,∠OCH=30°
∴OH=OC=,CH=OH=
在Rt△AOH中,AO=
此时AP=r=
∴PE+EF+PF的最小值为
故答案为:
科目:初中数学 来源: 题型:
【题目】课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm. 当边AC与DE重合,且边AB和DF在同一条直线上时:
(1)在下边的图形中,画出所有符合题意的图形;
(2)求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,共获利3192元.问第二次降价后售出该种商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(2)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.
(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC=2,∠ABC=120°,△CDE为等边三角形,CD=2,连接AD,M为AD中点.
(1)如图1,当B,C,E三点共线时,请画出△EDM关于点M的中心对称图形,并证明BM⊥ME;
(2)如图2,当A,C,E三点共线时,求BM的长;
(3)如图3,取BE中点N,连MN,将△CDE绕点C旋转,直接写出旋转过程中线段MN的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=. 如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦PA的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( )
A.m2+n2=9B.()2+()2=9
C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).
(1)如果所围成的花圃的面积为45m2,试求宽AB的长;
(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com