精英家教网 > 初中数学 > 题目详情
8.求作Rt△ABC,使∠C=90°,边AB=3cm,BC=2cm(保留作图痕迹,不写作法)

分析 过点C作CE⊥DC,以点C为圆心,2cm为半径画圆,交直线CD于点B,再以点B为圆心,3cm为半径画圆,角CE于点A,连接AB即可.

解答 解:如图所示.

点评 本题考查的是作图-复杂作图,熟知直角三角形的作法是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知一个直角三角形的两边长分别为3和4,则这个三角形的周长是12或7+$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在$\frac{22}{7}$,1.414,-$\sqrt{2}$,$\sqrt{15}$,π,-$\root{3}{9}$,$\root{3}{8}$中,无理数的个数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.$\sqrt{8}+{(\frac{1}{2})^{-1}}-{(\sqrt{2}+\sqrt{3})^0}-\frac{4}{{\sqrt{2}}}+\sqrt{{{(-2)}^2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若a=-(0.2)-2,b=(-5)0,c=(-2)2,则a、b、c大小为(  )
A.a<b<cB.a<c<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.分解因式:x2-9=(x+3)(x-3);x2-x+$\frac{1}{4}$=(x-$\frac{1}{2}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=4,BC=7,则EF的值是(  )
A.2$\sqrt{7}$B.4$\sqrt{7}$C.2$\sqrt{6}$D.4$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在所给的5×5方格中,每个小正方形的边长都是1.按要求画平行四边形,
(1)在图甲中,画出一个平行四边形,使其有一个内角为45°且它的四个顶点在方格的顶点上.
(2)在图乙中,画出一个平行四边形(非特殊的平行四边形),使其周长为整数且它的四个顶点在方格的顶点上.
(3)在图丙中,画出一个平行四边形,使其面积为6且它的四个顶点以及对角线交点都在方格的顶点上.

查看答案和解析>>

同步练习册答案