3£®Èçͼ£¨1£©£¬Å×ÎïÏßy=x2-2x+kÓëxÖá½»ÓÚA£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3£©£®
£¨1£©k=-3£¬µãAµÄ×ø±êΪ£¨-1£¬0£©£¬µãBµÄ×ø±êΪ£¨3£¬0£©£»
£¨2£©ÉèÅ×ÎïÏßy=x2-2x+kµÄ¶¥µãΪM£¬ÇóËıßÐÎABMCµÄÃæ»ý£»
£¨3£©ÔÚxÖáÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãD£¬Ê¹ËıßÐÎABDCµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬ÇëÇó³öµãDµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©ÔÚÅ×ÎïÏßy=x2-2x+kÉÏÇó³öµãQ×ø±ê£¬Ê¹¡÷BCQÊÇÒÔBCΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ®

·ÖÎö £¨1£©°ÑCµã×ø±ê´úÈëy=x2-2x+k¿ÉÆä„Sk=-3£¬´Ó¶øµÃµ½Å×ÎïÏß½âÎöʽΪy=x2-2x-3£¬È»ºó½â·½³Ìx2-2x-3=0¿ÉµÃµ½A¡¢BµãµÄ×ø±ê£»
£¨2£©°Ñ¶þ´Îº¯Êý½âÎöʽÅä³É¶¥µãʽ¿ÉµÃM£¨1£¬-4£©£¬Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚN£¬Èçͼ£¨1£©£¬ÀûÓÃËıßÐÎABMCµÄÃæ»ý=S¡÷AOC+SÌÝÐÎOCMN+S¡÷MNBºÍÈý½ÇÐÎÃæ»ý¹«Ê½¼ÆËã¼´¿É£»
£¨3£©×÷DE¡ÎyÖá½»Ö±ÏßBCÓÚE£¬Èçͼ£¨2£©£¬ÏÈÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßBCµÄ½âÎöʽΪy=x-3£¬ÉèD£¨x£¬x2-2x-3£©£¬ÔòE£¨x£¬x-3£©£¬Ôò¿É±íʾ³öDE=-x2+3x£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½S¡÷BCD=$\frac{1}{2}$DE•3=-$\frac{3}{2}$x2+$\frac{9}{2}$x£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó½â£»
£¨4£©ÏÈÅжϡ÷OBCΪµÈÑüÖ±½ÇÈý½ÇÐεõ½¡ÏOCB=¡ÏOBC=45¡ã£¬ÌÖÂÛ£ºµ±¡ÏCBQ=90¡ãʱ£¬BQ½»yÖáÓÚGµã£¬Èçͼ£¨3£©£¬ËùÒÔ¡ÏOBG=45¡ã£¬ÔòG£¨0£¬3£©£¬Ò×µÃÖ±ÏßBGµÄ½âÎöʽΪy=-x+3£¬ÔÙͨ¹ý½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+3}\\{y={x}^{2}-2x-3}\end{array}\right.$µÃQµã×ø±ê£»µ±¡ÏBCQ=90¡ãʱ£¬CQ½»xÖáÓÚHµã£¬Èçͼ£¨3£©£¬ÓÃͬÑù·½·¨µÃµ½´ËʱQµã×ø±ê£®

½â´ð ½â£º£¨1£©°ÑC£¨0£¬-3£©´úÈëy=x2-2x+kµÃk=-3£¬
ÔòÅ×ÎïÏß½âÎöʽΪy=x2-2x-3£¬
µ±y=0ʱ£¬x2-2x-3=0£¬½âµÃx1=-1£¬x2=3£¬ÔòA£¨-1£¬0£©£¬B£¨3£¬0£©£»
¹Ê´ð°¸Îª-3£¬£¨-1£¬0£©£¬£¨3£¬0£©£»
£¨2£©y=x2-2x-3=£¨x-1£©2-4£¬ÔòM£¨1£¬-4£©£¬
Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚN£¬Èçͼ£¨1£©£¬
ËıßÐÎABMCµÄÃæ»ý=S¡÷AOC+SÌÝÐÎOCMN+S¡÷MNB=$\frac{1}{2}$¡Á1¡Á3+$\frac{1}{2}$¡Á£¨3+4£©¡Á1+$\frac{1}{2}$¡Á4¡Á£¨3-1£©=9£»
£¨3£©´æÔÚ£®
×÷DE¡ÎyÖá½»Ö±ÏßBCÓÚE£¬Èçͼ£¨2£©£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
°ÑB£¨3£¬0£©£¬C£¨0£¬-3£©´úÈëµÃ$\left\{\begin{array}{l}{3k+b=0}\\{b=-3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=-3}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=x-3£¬
ÉèD£¨x£¬x2-2x-3£©£¬ÔòE£¨x£¬x-3£©£¬
¡àDE=x-3-£¨x2-2x-3£©=-x2+3x£¬
¡àS¡÷BCD=$\frac{1}{2}$DE•3=-$\frac{3}{2}$x2+$\frac{9}{2}$x=-$\frac{3}{2}$£¨x-$\frac{3}{2}$£©2+$\frac{27}{8}$£¬
µ±x=$\frac{3}{2}$ʱ£¬S¡÷BCDÓÐ×î´óÖµ£¬
¡ßS¡÷ACB=$\frac{1}{2}$¡Á4¡Á3=6£¬
¡àx=$\frac{3}{2}$ʱ£¬ËıßÐÎABDCµÄÃæ»ý×î´ó£¬
´ËʱDµã×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{15}{4}$£©£»
£¨4£©¡ßOB=OC=3£¬
¡à¡÷OBCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡à¡ÏOCB=¡ÏOBC=45¡ã£¬
µ±¡ÏCBQ=90¡ãʱ£¬BQ½»yÖáÓÚGµã£¬Èçͼ£¨3£©£¬Ôò¡ÏOBG=45¡ã£¬
¡àOG=OB=3£¬ÔòG£¨0£¬3£©£¬
Ò×µÃÖ±ÏßBGµÄ½âÎöʽΪy=-x+3£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+3}\\{y={x}^{2}-2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$£¬
¡àQ£¨-2£¬5£©£»
µ±¡ÏBCQ=90¡ãʱ£¬CQ½»xÖáÓÚHµã£¬Èçͼ£¨3£©£¬Ôò¡ÏOCH=45¡ã£¬
¡àOH=OC=3£¬ÔòH£¨-3£¬0£©£¬
Ò×µÃÖ±ÏßCHµÄ½âÎöʽΪy=-x-3£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-x-3}\\{y={x}^{2}-2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$£¬
¡àQ£¨1£¬-2£©£»
×ÛÉÏËùÊö£¬µãQ×ø±êΪ£¨1£¬-2£©»ò£¨2£¬5£©Ê±£¬Ê¹¡÷BCQÊÇÒÔBCΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£»»áÇó¶þ´Îº¯ÊýºÍÒ»´Îº¯ÊýÓë×ø±êÖáµÄ½»µã×ø±ê£»ÄÜÀûÓÃÏàËƱȱíʾÏ߶ÎÖ®¼äµÄ¹Øϵ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ÆË㣺
£¨1£©$\sqrt{9}$-$\root{3}{-1}$+$\sqrt{5}$£¨$\sqrt{5}$-$\frac{1}{\sqrt{5}}$£©£»
£¨2£©ÇóxµÄÖµ£º4x2=25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³ÖÐѧ¼Æ»®´ÓÒ»ÎÄÌ幫˾¹ºÂò¼×£¬ÒÒÁ½ÖÖÐͺŵÄСºÚ°å£¬¾­Ç¢Ì¸£¬¹ºÂòÒ»¿é¼×ÐÍСºÚ°å±È¹ºÂòÒ»¿éÒÒÐÍСºÚ°å¶àÓÃ20Ôª£¬ÇÒ¹ºÂò2¿é¼×ÐÍСºÚ°åºÍ3¿éÒÒÐÍСºÚ°å¹²Ðè440Ôª£®
£¨1£©Çó¹ºÂòÒ»¿é¼×ÐÍСºÚ°å¡¢Ò»¿éÒÒÐÍСºÚ°å¸÷Ðè¶àÉÙÔª£¿
£¨2£©¸ù¾Ý¸ÃÖÐѧʵ¼ÊÇé¿ö£¬Ðè´ÓÎÄÌ幫˾¹ºÂò¼×£¬ÒÒÁ½ÖÖÐͺŵÄСºÚ°å¹²60¿é£¬ÒªÇó¹ºÂò¼×£¬ÒÒÁ½ÖÖÐͺÅСºÚ°åµÄ×Ü·ÑÓò»³¬¹ý5240Ôª£®²¢ÇÒ¹ºÂò¼×ÐÍСºÚ°åµÄÊýÁ¿²»Ð¡ÓÚ¹ºÂòÒÒÐÍСºÚ°åÊýÁ¿µÄ$\frac{1}{2}$£®Ôò¸ÃÖÐѧ´ÓÎÄÌ幫˾¹ºÂò¼×£¬ÒÒÁ½ÖÖÐͺŵÄСºÚ°åÓÐÄļ¸ÖÖ·½°¸£¿ÄÄÖÖ·½°¸µÄ×Ü·ÑÓÃ×îµÍ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚ?ABCDÖУ¬ÒÑÖªµãE¡¢FÔÚ¶Ô½ÇÏß±ßBDÉÏ£¬ÇÒBE=DF£¬ÇóÖ¤£ºËıßÐÎAECFÊÇƽÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼËùʾµÄ¼¸ºÎÌ壬ÆäÖ÷ÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨0£¬4£©£¬¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬MÊÇxÖḺ°ëÖáÉϵÄÒ»¸ö¶¯µã£¨²»ÓëÔ­µãOÖغϣ©£¬ÒÔÏ߶ÎAMΪһ±ßÔÚÆäÓÒ²à×÷µÈ±ßÈý½ÇÐΡ÷AMN£®
£¨1£©ÇóµãBµÄ×ø±ê£»
£¨2£©ÔÚµãMÔ˶¯¹ý³ÌÖУ¬¡ÏABNµÄ´óСÊÇ·ñ·¢Éú¸Ä±ä£¿Èç²»¸Ä±ä£¬Çó³öÆä´óС£»Èç¸Ä±ä£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Á¬½ÓON£¬µ±ON¡ÎABʱ£¬ÇóMµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª·½³Ì3£¨2x-1£©=2+xµÄ½âÓë¹ØÓÚxµÄ·½³Ì$\frac{3-2k}{3}$-2£¨x-3£©=1µÄ½âÏàͬ£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺
£¨1£©$\sqrt{8}$+|$\sqrt{2}$-1|-¦Ð0+£¨$\frac{1}{2}$£©-1
£¨2£©£¨-2$\sqrt{2}$£©2¡Â£¨$\sqrt{75}$+3$\sqrt{\frac{1}{3}}$-$\sqrt{48}$£©
£¨3£©ÏÈ»¯¼ò£¬ºó¼ÆË㣺$\frac{1}{a+b}$+$\frac{1}{b}$+$\frac{b}{a£¨a+b£©}$£¬ÆäÖÐa=$\frac{\sqrt{5}+1}{2}$£¬b=$\frac{\sqrt{5}-1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ê®¶þ±ßÐεÄÄڽǺÍÊÇ1800¡ã£®
Èçͼ£¬Ð¡ÁÁ´ÓAµã³ö·¢£¬ÑØÖ±ÏßÇ°½ø10Ã׺óÏò×óת30¡ã£¬ÔÙÑØÖ±ÏßÇ°½ø10Ã×£¬ÓÖÏò
×óת30¡ã£¬¡­£¬ÕÕÕâÑù×ßÏÂÈ¥£¬ËûµÚÒ»´Î»Øµ½³ö·¢µØAµãʱ£¬Ò»¹²×ßÁË120Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸