·ÖÎö £¨1£©°ÑCµã×ø±ê´úÈëy=x2-2x+k¿ÉÆä„Sk=-3£¬´Ó¶øµÃµ½Å×ÎïÏß½âÎöʽΪy=x2-2x-3£¬È»ºó½â·½³Ìx2-2x-3=0¿ÉµÃµ½A¡¢BµãµÄ×ø±ê£»
£¨2£©°Ñ¶þ´Îº¯Êý½âÎöʽÅä³É¶¥µãʽ¿ÉµÃM£¨1£¬-4£©£¬Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚN£¬Èçͼ£¨1£©£¬ÀûÓÃËıßÐÎABMCµÄÃæ»ý=S¡÷AOC+SÌÝÐÎOCMN+S¡÷MNBºÍÈý½ÇÐÎÃæ»ý¹«Ê½¼ÆËã¼´¿É£»
£¨3£©×÷DE¡ÎyÖá½»Ö±ÏßBCÓÚE£¬Èçͼ£¨2£©£¬ÏÈÀûÓôý¶¨ÏµÊý·¨ÇóµÃÖ±ÏßBCµÄ½âÎöʽΪy=x-3£¬ÉèD£¨x£¬x2-2x-3£©£¬ÔòE£¨x£¬x-3£©£¬Ôò¿É±íʾ³öDE=-x2+3x£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½S¡÷BCD=$\frac{1}{2}$DE•3=-$\frac{3}{2}$x2+$\frac{9}{2}$x£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó½â£»
£¨4£©ÏÈÅжϡ÷OBCΪµÈÑüÖ±½ÇÈý½ÇÐεõ½¡ÏOCB=¡ÏOBC=45¡ã£¬ÌÖÂÛ£ºµ±¡ÏCBQ=90¡ãʱ£¬BQ½»yÖáÓÚGµã£¬Èçͼ£¨3£©£¬ËùÒÔ¡ÏOBG=45¡ã£¬ÔòG£¨0£¬3£©£¬Ò×µÃÖ±ÏßBGµÄ½âÎöʽΪy=-x+3£¬ÔÙͨ¹ý½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+3}\\{y={x}^{2}-2x-3}\end{array}\right.$µÃQµã×ø±ê£»µ±¡ÏBCQ=90¡ãʱ£¬CQ½»xÖáÓÚHµã£¬Èçͼ£¨3£©£¬ÓÃͬÑù·½·¨µÃµ½´ËʱQµã×ø±ê£®
½â´ð ½â£º£¨1£©°ÑC£¨0£¬-3£©´úÈëy=x2-2x+kµÃk=-3£¬
ÔòÅ×ÎïÏß½âÎöʽΪy=x2-2x-3£¬
µ±y=0ʱ£¬x2-2x-3=0£¬½âµÃx1=-1£¬x2=3£¬ÔòA£¨-1£¬0£©£¬B£¨3£¬0£©£»
¹Ê´ð°¸Îª-3£¬£¨-1£¬0£©£¬£¨3£¬0£©£»
£¨2£©y=x2-2x-3=£¨x-1£©2-4£¬ÔòM£¨1£¬-4£©£¬
Å×ÎïÏߵĶԳÆÖá½»xÖáÓÚN£¬Èçͼ£¨1£©£¬
ËıßÐÎABMCµÄÃæ»ý=S¡÷AOC+SÌÝÐÎOCMN+S¡÷MNB=$\frac{1}{2}$¡Á1¡Á3+$\frac{1}{2}$¡Á£¨3+4£©¡Á1+$\frac{1}{2}$¡Á4¡Á£¨3-1£©=9£»
£¨3£©´æÔÚ£®
×÷DE¡ÎyÖá½»Ö±ÏßBCÓÚE£¬Èçͼ£¨2£©£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¬
°ÑB£¨3£¬0£©£¬C£¨0£¬-3£©´úÈëµÃ$\left\{\begin{array}{l}{3k+b=0}\\{b=-3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=-3}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=x-3£¬
ÉèD£¨x£¬x2-2x-3£©£¬ÔòE£¨x£¬x-3£©£¬
¡àDE=x-3-£¨x2-2x-3£©=-x2+3x£¬
¡àS¡÷BCD=$\frac{1}{2}$DE•3=-$\frac{3}{2}$x2+$\frac{9}{2}$x=-$\frac{3}{2}$£¨x-$\frac{3}{2}$£©2+$\frac{27}{8}$£¬
µ±x=$\frac{3}{2}$ʱ£¬S¡÷BCDÓÐ×î´óÖµ£¬
¡ßS¡÷ACB=$\frac{1}{2}$¡Á4¡Á3=6£¬
¡àx=$\frac{3}{2}$ʱ£¬ËıßÐÎABDCµÄÃæ»ý×î´ó£¬
´ËʱDµã×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{15}{4}$£©£»
£¨4£©¡ßOB=OC=3£¬
¡à¡÷OBCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡à¡ÏOCB=¡ÏOBC=45¡ã£¬
µ±¡ÏCBQ=90¡ãʱ£¬BQ½»yÖáÓÚGµã£¬Èçͼ£¨3£©£¬Ôò¡ÏOBG=45¡ã£¬
¡àOG=OB=3£¬ÔòG£¨0£¬3£©£¬
Ò×µÃÖ±ÏßBGµÄ½âÎöʽΪy=-x+3£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-x+3}\\{y={x}^{2}-2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-2}\\{y=5}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$£¬
¡àQ£¨-2£¬5£©£»
µ±¡ÏBCQ=90¡ãʱ£¬CQ½»xÖáÓÚHµã£¬Èçͼ£¨3£©£¬Ôò¡ÏOCH=45¡ã£¬
¡àOH=OC=3£¬ÔòH£¨-3£¬0£©£¬
Ò×µÃÖ±ÏßCHµÄ½âÎöʽΪy=-x-3£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=-x-3}\\{y={x}^{2}-2x-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$£¬
¡àQ£¨1£¬-2£©£»
×ÛÉÏËùÊö£¬µãQ×ø±êΪ£¨1£¬-2£©»ò£¨2£¬5£©Ê±£¬Ê¹¡÷BCQÊÇÒÔBCΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖÊ£»»áÇó¶þ´Îº¯ÊýºÍÒ»´Îº¯ÊýÓë×ø±êÖáµÄ½»µã×ø±ê£»ÄÜÀûÓÃÏàËƱȱíʾÏ߶ÎÖ®¼äµÄ¹Øϵ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com