精英家教网 > 初中数学 > 题目详情
(2013•杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=
43
x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.
分析:根据OC的长度确定出n的值为8或-8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=-8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.
解答:解:根据OC长为8可得一次函数中的n的值为8或-8.
分类讨论:①n=8时,易得A(-6,0)如图1,
∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,
∴抛物线开口向下,则a<0,
∵AB=16,且A(-6,0),
∴B(10,0),而A、B关于对称轴对称,
∴对称轴直线x=
-6+10
2
=2,
要使y1随着x的增大而减小,且a<0,
∴x≥2;

②n=-8时,易得A(6,0),如图2,
∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,
∴抛物线开口向上,则a>0,
∵AB=16,且A(6,0),
∴B(-10,0),而A、B关于对称轴对称,
∴对称轴直线x=
6-10
2
=-2,
要使y1随着x的增大而减小,且a>0,
∴x≤-2.
点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•杭州一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图;
(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:
①当0<t≤5时,y=
4
5
t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=
1
2
;④当t=
29
2
秒时,△ABE∽△QBP;
其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州)(1)先求解下列两题:
①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;
②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数y=
kx
(x>0)
的图象经过点B,D,求k的值.
(2)解题后,你发现以上两小题有什么共同点?请简单地写出.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•杭州一模)已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,-3),B(4,0).
(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.

查看答案和解析>>

同步练习册答案