精英家教网 > 初中数学 > 题目详情
9.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,当G点在何位置时四边形AEBD是矩形?请说明理由并求出点H的坐标.

分析 (1)根据旋转变换的性质得到DC=CO,∠CDG=∠COA=90°,根据正方形的性质得到CB=CO,∠B=90°,根据直角三角形的全等的判定定理证明即可;
(2)证明Rt△COH≌Rt△CDH,得到∠OCH=∠DCH,HO=DH,等量代换即可;
(3)根据矩形的判定定理证明四边形AEBD是矩形,设点H的坐标为(x,0),根据勾股定理列出方程,解方程求出x的值,得到点H的坐标.

解答 解(1)∵将正方形ABCO绕点C逆时针旋转角度α,
∴DC=CO,∠CDG=∠COA=90°,
∵四边形OCBA是正方形,
∴CB=CO,∠B=90°,
∴CB=CD,∠B=∠CDG=90°
在Rt△CDG与Rt△CBG中,
$\left\{\begin{array}{l}{CD=CB}\\{CG=CG}\end{array}\right.$,
∴Rt△CDG≌Rt△CBG;
(2)∵∠CDG=90°,
∴∠CDH=90°,
在Rt△COH与Rt△CDH中,
$\left\{\begin{array}{l}{CO=CD}\\{CH=CH}\end{array}\right.$,
∴Rt△COH≌Rt△CDH,
∴∠OCH=∠DCH,HO=DH,
∵Rt△CDG≌Rt△CBG,
∴∠DCG=∠BCG,DG=BG,
∴∠HCG=∠DCG+∠DCH=45°,
HG=HD+DG=HO+BG;
(3)当G是AB中点时,四边形ADBE是矩形,
∵G是AB中点,
∴BG=AG=$\frac{1}{2}$AB
由(2)得DG=BG,
又∵AB=DE,
∴DG=$\frac{1}{2}$DE,
∴DG=GE=BG=AG,
∴四边形AEBD是平行四边形,
∵AB=DE,
∴□ADBE是矩形,
设点H的坐标为(x,0),
则HO=HD=x,DG=BG=AG=3,AH=6-x,
由勾股定理得,(6-x)2+33=(3+x)2
解得,x=2,
∴H(2,0).

点评 本题考查的是正方形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、正方形的四条边相等、四个角都是90°是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.利用加减消元法解方程组$\left\{\begin{array}{l}{2x+5y=-20①}\\{5x-3y=8②}\end{array}\right.$,下列做法正确的是(  )
A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)
C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知$\left\{\begin{array}{l}{x-3y+z=0}\\{3x-3y-4z=0}\end{array}\right.$,则x:y:z=5:3:2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知x,y满足$\left\{\begin{array}{l}{2x-3y=1①}\\{3x-2y=5②}\end{array}\right.$,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是(  )
A.a=2,b=-1B.a=-4,b=3C.a=1,b=-7D.a=-7,b=5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在同一直角坐标系中,直线y=-x+3与y=3x-5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=-x+3与y=3x-5上的点.
(1)求△ABC的面积;
(2)若P、Q关于原点成中心对称,求P点的坐标;
(3)若△QPC≌△ABC,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知一元一次方程ax+b=0(a,b为常数,a≠0)的解为x=2,那么一次函数y=ax+b的函数值为0时,自变量x的值是(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.不解方程,判断下列方程的根的情况:
(1)x2-3x+3=0;
(2)2x2-3x=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解不等式组:$\left\{\begin{array}{l}{4x>x-9}\\{\frac{1+3x}{2}>2x}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根.

查看答案和解析>>

同步练习册答案