精英家教网 > 初中数学 > 题目详情

如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.连接OC交AE于点H。

(1)求证:GC⊥OC.

(2)求证:AF=CF.

(3)若∠EAB=30°,CF=2,求GA的长.

 

【答案】

(1)证明详见解析;(2)证明详见解析;(3).

【解析】

试题分析:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理、垂径定理和等腰三角形的判定.(1)连结OC,由C是劣弧AE的中点,由垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可求解;(2)连结AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;

(3)在Rt△ADF中,∠DAF=30°,FA=FC=2,根据含30度的直角三角形三边的关系得到DF=1,AD=,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF;然后把DF=1,AD=,CF=2代入计算即可求解.

试题解析:

(1)证明:如图,连结OC,

∵C是劣弧AE的中点,

∴OC⊥AE,

∵CG∥AE,

∴CG⊥OC,

∴CG是⊙O的切线;

(2)证明:连结AC、BC,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠2+∠BCD=90°,

而CD⊥AB,

∴∠B+∠BCD=90°,

∴∠B=∠2,

∵AC弧=CE弧,

∴∠1=∠B,

∴∠1=∠2,

∴AF=CF;

(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,

∴DF=AF=1,

∴AD=DF=

∵AF∥CG,

∴DA:AG=DF:CF,即:AG=1:2,

∴AG=

考点:1、切线的判定;2、等腰三角形的判定与性质;3、垂径定理;4、圆周角定理;4、相似三角形的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A,OC⊥BD于点E.
(1)求证:BC是⊙O的切线;
(2)若BD=12,EC=10,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB是⊙O直径,∠D=35°,则∠BOC等于(  )

查看答案和解析>>

同步练习册答案