精英家教网 > 初中数学 > 题目详情
若m为整数,在使m2+m+4为完全平方数的所有m的值中,设其最大值为a,最小值为b,次小值为c.
(1)求a、b、c的值;
(2)对a、b、c进行如下操作:任取两个求其和再除以
2
,同时求其差再除以
2
,加上剩下的一个数,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,得到2004,2005,2006?证明你的结论.
分析:(1)设m2+m+4=k2(k为非负整数),则有m2+m+4-k2=0,由m为整数知其△为完全平方数,即1-4(4-k2)=p2(p为非负整数),(2k+p)(2k-p)=15,显然2k+p>2k-p,再分别求出a、b、c的值即可.
(2)根据题意所述进行计算可得出规律,继而可判断出答案.
解答:解:(1)设m2+m+4=k2(k为非负整数),则有m2+m+4-k2=0,
由m为整数知其△为完全平方数,即1-4(4-k2)=p2(p为非负整数),
(2k+p)(2k-p)=15,显然:2k+p>2k-p,
所以
2k+p=15
2k-p=1
2k+p=5
2k-p=3

解得p=7或p=1,
所以m=
-1±p
2

得:m1=3,m2=-4,m3=0,m4=-1,
所以a=3,b=-4,c=-1.
(2)因为(
a+b
2
)2+(
a-b
2
)2+c2=a2+b2+c2

即操作前后,这三个数的平方和不变,
而32+(-4)2+(-1)2≠20042+20052+20062
所以,对a、b、c进行若干次操作后,不能得到2004,2005,2006这三个数.
点评:本题考查了对完全平方数的理解,拓展应用是解此题的关键,要打破思维常规进行分析.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料并解答问题:
我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.
关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:
方法1:若m为奇数(m≥3),则a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股数.
方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.
(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;
(2)请根据方法1和方法2按规律填写下列表格:
精英家教网
(3)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树
 
棵.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

为庆祝建党90周年,美化社区环境,某小区要修建一块艺术草坪.如图,该草坪依次由部分互相重叠的一些全等的菱形组成,且所有菱形的较长的对角线在同一条直线上,前一个菱形对角线的交点是后一个菱形的一个顶点,如菱形ABCD、EFGH、CIJK…,要求每个菱形的两条对角线长分别为4m和6m.
(1)若使这块草坪的总面积是39m2,则需要
4
4
个这样的菱形;
(2)若有n个这样的菱形(n≥2,且n为整数),则这块草坪的总面积是
(9n+3)
(9n+3)
m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为庆祝建党90周年,美化社区环境,某小区要修建一块艺术草坪.如图,该草坪依次由部分互相重叠的一些全等的菱形组成,且所有菱形的较长的对角线在同一条直线上,前一个菱形对角线的交点是后一个菱形的一个顶点,如菱形ABCD、EFGH、CIJK…,要求每个菱形的两条对角线长分别为4m和6m.
(1)若使这块草坪的总面积是39m2,则需要______个这样的菱形;
(2)若有n个这样的菱形(n≥2,且n为整数),则这块草坪的总面积是______m2

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市慈溪中学保送生招生考试数学模拟试卷(三)(解析版) 题型:解答题

若m为整数,在使m2+m+4为完全平方数的所有m的值中,设其最大值为a,最小值为b,次小值为c.
(1)求a、b、c的值;
(2)对a、b、c进行如下操作:任取两个求其和再除以,同时求其差再除以,加上剩下的一个数,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,得到2004,2005,2006?证明你的结论.

查看答案和解析>>

同步练习册答案