如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点
1.如图1,矩形ABCD中,AB=3,BC=1,请在边CD上作出A,B两点(除C,D以外)的勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(1) 2.如图2,矩形ABCD中,
AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上.
①当t=4,求PH的长.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).
1.以线段AB为直径的圆与线段CD的交点有两个 ----------1分
2.①当t=4时,有3个勾股点.如图,
PH=或PH=2或PH=3 .每种情况各1分 --3分
②当0≤ t<4时,有2个勾股点;
当t=4时,有3个勾股点;
当4<t<5时,有4个勾股点;
当t=5时,有2个勾股点;
当5<t<8时,有4个勾股点;
当t=8时,有2个勾股点. -------------------------5分
(除①的情况,其余每种1分)
综上所述,当0≤ t<4或t=5或t=8时,有2个勾股点;当t=4时,有3个勾股点;当4<t<5或5<t<8时,有4个勾股点.
【解析】(1)以线段AB为直径的圆与线段CD的交点,或线段CD的中点就是A,B两点在CD上的勾股点;
(2)①如图,当t=4时,PM=8-4=4,QN=5-4=1,分三种情况:
当∠MHN=90°时,根据已知条件可以证明△PMH∽△QHN,然后利用相似三角形对应线段成比例即可求出PH;
当∠H''NM=90°时,设PH=x,那么H''Q=4-x,根据勾股定理得到PM2+PH''2=QN2+H''Q2+MN2,而MN==5,依次即可求出PH'';
当∠H'MN=90°时,根据勾股定理得到H'P2+PM2+QH'2+QN2=MN2,而H'Q=PH'+PQ=PH'+4,依次即可求出PH'.
②利用①的结果可以探究满足条件的点H的个数及相应t的取值范围.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
1.如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法);
2.矩形ABCD中,AB=3,BC=1,直接写出边CD上A, B两点的勾股点的个数;
3.如图2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.过点P作直线l平行于BC,点H为M,N两点的勾股点,且点H在直线l上.求PH的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com