精英家教网 > 初中数学 > 题目详情

【题目】如图,ABBCDCBC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.

【答案】D=45°;∠AED=70°;∠BFE=115°.

【解析】

根据直角三角形两锐角互余列式求解即可得到∠D,根据在同一平面内垂直于同一直线的两直线互相平行可得ABCD,再根据两直线平行,内错角相等可得∠AED=A,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BFE=D+AED

DCBC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;

ABBCDCBC,∴ABDC,∴∠AED=A=70°;

在△DEF中,∠BFE=D+AED=45°+70°=115°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(3pq)2

(2)x3(4x)2x

(3)(m4m÷m2n)·mn

(4)(2)232÷(3.144+π)0

(5)(a2)3·(a2)4÷(-a2)5

(6)[2381×(1)2]×.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BE是圆O的直径,A在EB的延长线上,AP为圆O的切线,P为切点,弦PD垂直于BE于点C.
(1)求证:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圆O的半径及tan∠APB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校大门出口处有一自动感应栏杆,点A是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大门BC打开的宽度为2米,以下哪辆车可以通过?(  )
(栏杆宽度,汽车反光镜忽略不计)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)

A.宝马Z4(4200mm×1800mm×1360mm)
B.奇瑞QQ(4000mm×1600mm×1520mm)
C.大众朗逸(4600mm×1700mm×1400mm)
D.奥迪A4(4700mm×1800mm×1400mm)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.

1)完成下列填空:

已知

用“<”或“>”填空

5+2_____3+1

31_____52

12_____4+1

2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).请你说明上述性质的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线经过原点和点,点的坐标为.

(1)求直线所对应的函数解析式;

(2)当P在线段OA上时,设点横坐标为,三角形的面积为,写出关于的函数解析式,并指出自变量的取值范围;

(3)当P在射线OA上时,在坐标轴上有一点,使正整数),请直接写出点的坐标(本小题只要写出结果,不需要写出解题过程)

查看答案和解析>>

同步练习册答案