【题目】已知A=2x2﹣9x﹣11,B=3x2﹣6x+4.求:
(1)A﹣B;
(2)A+2B.
【答案】
(1)
解:∵A=2x2﹣9x﹣11,B=3x2﹣6x+4,
∴A﹣B
=2x2﹣9x﹣11﹣3x2+6x﹣4
=﹣x2﹣3x﹣15
(2)
解:∵A=2x2﹣9x﹣11,B=3x2﹣6x+4,
∴
= (2x2﹣9x﹣11)+2(3x2﹣6x+4)
=x2﹣4.5x﹣5.5+6x2﹣12x+8
=7x2﹣16.5x+2.5
【解析】(1)根据A=2x2﹣9x﹣11,B=3x2﹣6x+4,可以求得A﹣B的值;(2)根据A=2x2﹣9x﹣11,B=3x2﹣6x+4,可以求得 A+2B的值.
【考点精析】本题主要考查了整式加减法则的相关知识点,需要掌握整式的运算法则:(1)去括号;(2)合并同类项才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,EF∥AD,∠1=∠2,将求证AB∥DG的过程填空完整.
证明:∵EF∥AD(________)
∴∠2=________(________)
又∵∠1=∠2(________)
∴∠1=∠3(________)
∴AB∥________(________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级上学期期中考试后从全年级400名学生中抽取了60名学生的考试成绩作为一个样本,用来分析全年级的考试成绩情况,这个问题的样本容量是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC.
(1)尺规作图:作∠ABC的平分线,交AC于点D(保留作图痕迹,不写作法);
(2)E是底边BC的延长线上一点,M是BE的中点,连接DE、DM.若CE=CD,求证:DM⊥BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠4
B.∠D=∠DCE
C.∠1=∠2
D.∠D+∠ACD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.
(1)若AB=AC,点E在AD延长线上.
当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=°,
∠BEA=°;
(2)如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);
(3)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com