精英家教网 > 初中数学 > 题目详情
如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.
(1)求点C的坐标;
(2)求过A,B,C三点的抛物线的解析式;
(3)在(2)的条件下,若在抛物线上有一点D,使四边形BOCD为直角梯形,求直线BD的解析式;
(4)设点M是抛物线上任意一点,过点M作MN⊥y轴,交y轴于点N.若在线段AB上有且只有一点P,使∠MPN为直角,求点M的坐标.

【答案】分析:(1)已知了A、B的坐标,即可求出OA、OB的长,根据相交弦定理的推论即可求出OC的长,也就求出了C点的坐标.
(2)已知了三点的坐标,可用待定系数法求抛物线的解析式.
(3)要使四边形BOCD为直角梯形,那么CD∥OB,直线CD与抛物线的交点即为D点.根据抛物线的对称性即可得出D点的坐标.然后用待定系数法求出直线BD的解析式.
(4)已知在线段AB上有且只有一点使∠MPN为直角,如果以MN为直径作圆,那么P点必为圆和线段AB的切点.而MN∥x轴,因此三角形MPN是等腰直角三角形,因此M点的横坐标为纵坐标绝对值的2倍,然后分M在x轴上方或x轴下方两种情况分别代入抛物线的解析式中进行求解即可.
解答:解:(1)C点的坐标为(0,2);理由如下:
如图,连接AC,CB.依相交弦定理的推论可得OC2=OA•OB,
解得OC=2.
故C点的坐标为(0,2).

(2)设抛物线解析式为y=a(x+1)(x-4).
把点C(0,2)的坐标代入上式得a=-
∴抛物线解析式是y=-x2+x+2.

(3)如图,过点C作CD∥OB,交抛物线于点D,则四边形BOCD为直角梯形.
由(2)知抛物线的对称轴是x=
∴点D的坐标为(3,2).
设过点B,点D的解析式是y=kx+b.
把点B(4,0),点D(3,2)的坐标代入上式得
解之得
∴直线BD的解析式是y=-2x+8.

(4)解:依题意可知,以MN为直径的半圆与线段AB相切于点P.
设点M的坐标为(m,n).
①当点M在第一或第三象限时,m=2n.
把点M的坐标(2n,n)代入抛物线的解析式得n2-n-1=0,
解之得n=
∴点M的坐标是(1+)或(1-).
②当点M在第二或第四象限时,m=-2n.
把点M的坐标(-2n,n)代入抛物线的解析式得n2+2n-1=0,
解之得
∴点M的坐标是(2-2,-1+)或(2+2,-1-).
综上,满足条件的点M的坐标是(1+),(1-),
(2-2,-1+),(2+2,-1-).
点评:本题考查了相交弦定理、二次函数解析式的确定、梯形的判定和性质、圆周角定理等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=
9x
的图象在第一象限相精英家教网交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A,B,C作循环对称跳动,即第一次从点P跳到关于点A的对称点M处,第二次从点M跳到关于点B的对称点N处,第三次从点N跳到关于点C的对称点处,…如此下去.
(1)在图中标出点M,N的位置,并分别写出点M,N的坐标:
 

(2)请你依次连接M、N和第三次跳后的点,组成一个封闭的图形,并计算这个图形的面积;
(3)猜想一下,经过第2009次跳动之后,棋子将落到什么位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系xoy中,有一组对角线长分别为1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其对角线OB1、B1B2、B2 B3依次放置在y轴上(相邻顶点重合),依上述排列方式,对角线长为n的第n个正方形的顶点An的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

同步练习册答案