精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,EFGH依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为678,四边形DHOG面积为______

【答案】7

【解析】

连接OCOBOAOD,易证SOBF=SOCFSODG=SOCGSODH=SOAHSOAE=SOBE,从而有S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,由此即可求得答案.

连接OCOBOAOD

EFGH依次是各边中点,

∴△AOE和△BOE等底等高,

SOAE=SOBE

同理可证,SOBF=SOCFSODG=SOCGSODH=SOAH

S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE

S四边形AEOH=6S四边形BFOE=7S四边形CGOF=8

6+8=7+S四边形DHOG

解得:S四边形DHOG=7

故答案为:7

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A. a6÷2a22a3 B. (﹣ xy32=﹣x2y5

C. (﹣3a2(﹣2ab2)=6a3b2 D. (﹣50=﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一系列等式:

1×2×3×4+1=52=(12+3×1+1)2

2×3×4×5+1=112=(22+3×2+1)2

3×4×5×6+1=192=(32+3×3+1)2

4×5×6×7+1=292=(42+3×4+1)2

……

(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是________

(2)式子(n-1) n (n+1) (n+2)+1=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=2x2﹣4x﹣6.
(1)用配方法将y=2x2﹣4x﹣6化成y=a (x﹣h)2+k的形式;并写出对称轴和顶点坐标.
(2)当0<x<4时,求y的取值范围;
(3)求函数图象与两坐标轴交点所围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.

(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.
(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.
(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD的一条对角线长为6,边AB的长是方程 的一个根,则菱形ABCD的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D, AC交⊙O于点E,∠BAC=45°。

(1)求∠EBC的度数;
(2)求证:BD=CD。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列推理说明:

如图,已知B+∠BCD=180°B=∠D.求证:E=∠DFE

证明:∵∠B+∠BCD=180°(   ),

ABCD    

∴∠B=    

∵∠B=∠D( 已知 ),

∴ ∠ = ( 等量代换 )

ADBE   

∴∠E=∠DFE   

查看答案和解析>>

同步练习册答案