精英家教网 > 初中数学 > 题目详情
已知x、y为正整数,且满足xy-( x+y )=2p+q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y )  (x≥y ).
分析:此题需分类讨论,①当x是y的倍数时,设x=ky(k是正整数).解方程k(y-2)=3;②当x不是y的倍数时,令x=ap,y=bp,a,b互质,则q=abp.解方程abp-1=(a-1)(b-1)即可.
解答:解:①当x是y的倍数时,设x=ky(k是正整数).
则由原方程,得
ky•y-(ky+y)=2y+ky,
∵y≠0,
∴ky-(k+1)=2+k,
∴k(y-2)=3,
当k=1时,x=5,y=5;
当k=3时,x=9,y=3;
x=9
y=3
x=5
y=5


②当x不是y的倍数时,令x=ap,y=bp,a,b互质,则q=abp,代入原式
得:abp2-(ap+bp)=2p+abp,即abp-1=(a+1)(b+1)
当p=1时,a+b=2,可求得a=1,b=1,此时不满足条件;
当p>1时,abp≥2ab-1=ab+(ab-1)≥ab>(a-1)(b-1)
此时,abp-1=(a-1)(b+1)不满足条件;
综上所述,满足条件的数对有:
x=9
y=3
x=5
y=5
点评:本题主要考查的是最大公约数与最小公倍数.由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积.即(a,b)×[a,b]=a×b.所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a,b为正整数,且满足
a+b
a2+ab+b2
=
4
49
,求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b为正整数,且a为素数(也称为质数),a2+b2是一个完全平方数,试用含a的代数式表示b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1y1-x2y2=2008.求b的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b为正整数,且满足(
1
a
1
a
-
1
b
-
1
b
1
a
+
1
b
)•(
1
a
-
1
b
)÷(
1
a2
+
1
b2
)=2
,则a+b=
9
9

查看答案和解析>>

同步练习册答案