精英家教网 > 初中数学 > 题目详情
(2003•河南)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE•AD=16,AB=4
5

(1)求证:CE=EF;
(2)求EG长.
分析:(1)根据AD平分∠CAB交BC于点D,CE⊥AD证明△ACE和△AFE全等,根据全等三角形对应边相等,CE=EF,
(2)因为∠CAD是公共角,∠ACB=∠AEC=90°,所以△ACE和△ADC相似,根据相似三角形对应边成比例,列出比例式整理即可得到AC2=AE•AD,代入数据计算即可求出AC的长,再根据勾股定理求出BC的长度为8,最后根据三角形的中位线平行于第三边并且等于第三边的一半EG=
1
2
BC.
解答:(1)证明:∵AD平分∠CAB交BC于点D,
∴∠CAE=∠FAE,
∵CE⊥AD,
∴∠AEC=∠AEF=90°,
在△ACE和△AFE中,
∠CAE=∠FAE
AE=AE
∠AEC=∠AEF=90°   

∴△ACE≌△AFE(ASA),
∴CE=EF;

(2)解:∵CE⊥AD,
∴∠AEC=90°,
∵∠ACB=90°,
∴∠AEC=∠ACB,
又∵∠CAE=∠CAE,
∴△ACE∽△ADC,
AC
AE
=
AD
AC

即AC2=AE•AD,
∵AE•AD=16,
∴AC2=16,
∴AC=4,
∴△ABC中,BC=
AB2-AC2
=8,
∵EG∥BC,
∴EG=
1
2
×8=4.
点评:本题主要考查两角对应相等,两三角形相似,相似三角形对应边成比例,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟练掌握性质并灵活运用是解题的关键,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2003•河南)如图,⊙O、⊙B相交于点M、N,点B在⊙O上,NE为⊙B的直径,点C在⊙B上,CM交⊙O于点A,连接AB并延长交NC于点D,求证:AD⊥NC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•河南)如图,Rt△OAB的斜边AO在x轴的正半轴上,直角顶点B在第四象限内,S△OAB=20,OB:AB=1:2,求A、B两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•河南)如图,点D、C是以AB为直径的半圆上的两点,O为圆心,DE与AC相交于点E,OC∥AD,AB=5,cos∠CAB=0.8,求CE和DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2003•河南)如图,AB是⊙O的直径,O为圆心,AB=20,DP与⊙O相切于点D,DP⊥PB,垂足为P,PB与⊙O交于点C,PD=8.
①求BC的长;
②连接DC,求tan∠PCD的值;
③以A为原点,直线AB为x轴建立平面直角坐标系,求直线BD的解析式.

查看答案和解析>>

同步练习册答案