精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.

(1)求证:CF是⊙O的切线;

(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA即可.

(2)根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出DE=EC=BO=BD=OA由此根据S=2S△AOC﹣S扇形OAD即可解决问题.

试题解析:(1)证明:如图连接OD.

四边形OBEC是平行四边形,OC∥BE,∠AOC=∠OBE,∠COD=∠ODB,OB=OD,∠OBD=∠ODB,∠DOC=∠AOC,在△COD和△COA中,OC=OC,COD=COA,OD=OA△COD≌△COA,∠CAO=∠CDO=90°,CF⊥OD,CF是⊙O的切线.

(2)解:∠F=30°,∠ODF=90°,∠DOF=∠AOC=∠COD=60°,OD=OB,△OBD是等边三角形,∠DBO=60°,∠DBO=∠F+∠FDB,∠FDB=∠EDC=30°,EC∥OB,∠E=180°﹣∠OBD=120°,∠ECD=180°﹣∠E﹣∠EDC=30°,EC=ED=BO=DB,EB=4,OB=OD═OA=2,在RT△AOC中,∠OAC=90°,OA=2,∠AOC=60°,AC=OAtan60°=S=2S△AOC﹣S扇形OAD=2××2×=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.

(1)求证:△BCG≌△DCE;
(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的个数为(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD的外侧,以四边形的边为边分别作四个小正方形,连接相邻的两个顶点,得到四个阴影三角形,则这四个阴影三角形的面积a、b、c、d满足(
A.a+b=c+d
B.a2+b2=c2+d2
C.a+c=b+d
D.a2+c2=b2+d2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图△ABC是等边三角形,D,E分别是BC,AC上两点且BD=CE,以AD为边在AC一侧作等边△ADF.求证:EF∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=

其中正确结论的个数是(

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级进行立定跳远训练,以下是刘明和张晓同学六次的训练成绩(单位:m)
刘明:2.54,2.48,2.50,2.48,2.54,2.52
张晓:2.50,2.42,2.52,2.56,2.48,2.58
(1)填空:李明的平均成绩是 . 张晓的平均成绩是
(2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?
(3)若预知参加年级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个角的补角是这个角余角的3倍,则这个角是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据8,3,8,6,7,8,7的众数和中位数分别是(
A.8,6
B.7,6
C.7,8
D.8,7

查看答案和解析>>

同步练习册答案