Èçͼ£¬CΪÏ߶ÎBDÉÏÒ»¶¯µã£¬·Ö±ð¹ýµãB¡¢D ×÷AB¡ÍBD£¬ED¡ÍBD£¬Á¬½ÓAC¡¢EC£®ÒÑÖªAB=3£¬DE=2£¬BD=12£¬ÉèCD=x£®
£¨1£©Óú¬xµÄ´úÊýʽ±íʾAC+CEµÄ³¤Îª
9+(12-x)2
+
4+x2
9+(12-x)2
+
4+x2
£»
£¨2£©µ±AC+CEµÄÖµ×îСʱ£¬×îСֵΪ
13
13
£»
£¨3£©·ÂÕÕ£¨1£©£¨2£©Öеķ½·¨£¬¹¹ÔìͼÐβ¢Çó³ö´úÊýʽ 
x2+9
+
(24-x)2+16
µÄ×îСֵ£®£¨Í¼ÖеÄÏ߶αê³ö±ØÒªµÄÊýºÍ×Öĸ£©
·ÖÎö£º1£©ÓÉÓÚ¡÷ABCºÍ¡÷CDE¶¼ÊÇÖ±½ÇÈý½ÇÐΣ¬¹ÊAC£¬CE¿ÉÓɹ´¹É¶¨ÀíÇóµÃ£»
£¨2£©ÈôµãC²»ÔÚAEµÄÁ¬ÏßÉÏ£¬¸ù¾ÝÈý½ÇÐÎÖÐÈÎÒâÁ½±ßÖ®ºÍ£¾µÚÈý±ßÖª£¬AC+CE£¾AE£¬¹Êµ±A¡¢C¡¢EÈýµã¹²Ïßʱ£¬AC+CEµÄÖµ×îС£»
£¨3£©ÓÉ£¨1£©£¨2£©µÄ½á¹û¿É×÷BD=24£¬¹ýµãB×÷AB¡ÍBD£¬¹ýµãD×÷ED¡ÍBD£¬Ê¹AB=4£¬ED=3£¬Á¬½ÓAE½»BDÓÚµãC£¬È»ºó¹¹Ôì¾ØÐÎAFDB£¬Rt¡÷AFE£¬ÀûÓþØÐεÄÖ±½ÇÈý½ÇÐεÄÐÔÖÊ¿ÉÇóµÃAEµÄÖµ¾ÍÊÇ´úÊýʽ 
x2+9
+
(24-x)2+16
µÄ×îСֵ£®
½â´ð£º½â£º£¨1£©AC+CE=
BC2+AB2
+
CD2+DE2
=
9+(12-x)2
+
4+x2
£¬¼´AC+CE=
9+(12-x)2
+
4+x2
£»
¹ÊÌ
9+(12-x)2
+
4+x2
£»

£¨2£©µ±µãCÊÇAEºÍBD½»µãʱ£¬AC+CEµÄÖµ×îС£®
Èçͼ1Ëùʾ£¬¹ýµãB×÷AB¡ÍBD£¬¹ýµãD×÷ED¡ÍBD£®
AE=
AF2+EF2
=
122+(3+2)2
=13£®
¹ÊÌ13£»

£¨3£©Èçͼ2Ëùʾ£¬¹ýµãB×÷AB¡ÍBD£¬¹ýµãD×÷ED¡ÍBD£¬Ê¹AB=4£¬ED=3£¬
DB=24£¬Á¬½ÓAE½»BDÓÚµãC£¬
¡ßAE=AC+CE=
x2+9
+
(24-x)2+16
£¬
¡àAEµÄ³¤¼´Îª´úÊýʽ 
x2+9
+
(24-x)2+16
µÄ×îСֵ£®
¹ýµãA×÷AF¡ÎBD½»EDµÄÑÓ³¤ÏßÓÚµãF£¬µÃ¾ØÐÎABDF£¬
ÔòAB=DF=3£¬AF=BD=12£®
ËùÒÔAE=
AF2+EF2
=
242+(3+4)2
=25£¬¼´AEµÄ×îСֵÊÇ25£®
ËùÒÔ´úÊýʽ 
x2+9
+
(24-x)2+16
µÄ×îСֵΪ25£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é×î¶Ì·ÏßÎÊÌ⣬ÀûÓÃÁËÊýÐνáºÏµÄ˼Ï룬¿Éͨ¹ý¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬ÀûÓù´¹É¶¨ÀíÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬CΪÏ߶ÎBDÉÏÒ»¶¯µã£¬·Ö±ð¹ýµãB¡¢D×÷AB¡ÍBD£¬ED¡ÍBD£¬Á¬½ÓAC¡¢EC£®ÒÑÖªAB=5£¬DE=1£¬BD=8£¬ÔòAC+CEµÄ×îСֵÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÇàÌïÏØÄ£Ä⣩ΪÁË̽Ë÷´úÊýʽ
x2+1
+
(8-x)2+25
µÄ×îСֵ£¬Ð¡Ã÷ÇÉÃîµÄÔËÓÃÁË¡°ÊýÐνáºÏ¡±Ë¼Ï룮¾ßÌå·½·¨ÊÇÕâÑùµÄ£ºÈçͼ£¬CΪÏ߶ÎBDÉÏÒ»¶¯µã£¬·Ö±ð¹ýµãB¡¢D×÷AB¡ÍBD£¬ED¡ÍBD£¬Á¬½ÓAC¡¢EC£®ÒÑÖªAB=1£¬DE=5£¬BD=8£¬ÉèBC=x£®ÔòAC=
x2+1
£¬CE=
(8-x)2+25
£¬ÔòÎÊÌ⼴ת»¯³ÉÇóAC+CEµÄ×îСֵ£®
£¨1£©ÎÒÃÇÖªµÀµ±A¡¢C¡¢EÔÚͬһֱÏßÉÏʱ£¬AC+CEµÄÖµ×îС£¬ÓÚÊÇ¿ÉÇóµÃ
x2+1
+
(8-x)2+25
µÄ×îСֵµÈÓÚ
10
10
£¬´Ëʱx=
4
3
4
3
£»
£¨2£©ÇëÄã¸ù¾ÝÉÏÊöµÄ·½·¨ºÍ½áÂÛ£¬ÊÔ¹¹Í¼Çó³ö´úÊýʽ
x2+4
+
(12-x)2+9
µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬CΪÏ߶ÎBDÉÏÒ»µã£¬BC=3£¬CD=2£®¡÷ABC¡¢¡÷ECD¾ùΪÕýÈý½ÇÐΣ¬AD½»CEÓÚF£¬ÔòS¡÷ACF£ºS¡÷DEFµÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬CΪÏ߶ÎBDÉÏÒ»µã£¨²»ÓëµãB£¬DÖغϣ©£¬ÔÚBDͬ²à·Ö±ð×÷ÕýÈý½ÇÐÎABCºÍÕýÈý½ÇÐÎCDE£¬ADÓëBE½»ÓÚÒ»µãF£¬ADÓëCE½»ÓÚµãH£¬BEÓëAC½»ÓÚµãG£®
£¨1£©ÇóÖ¤£ºBE=AD£»
£¨2£©Çó¡ÏAFGµÄ¶ÈÊý£»
£¨3£©ÇóÖ¤£ºCG=CH£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ¢Ù£¬CΪÏ߶ÎBDÉÏÒ»¶¯µã£¬·Ö±ð¹ýµãB£®D×÷AB¡ÍBD£¬ED¡ÍBD£¬Á¬½ÓAC¡¢EC£®ÒÑÖªAB=5£¬DE=1£¬BD=8£¬ÉèBC=x£®

£¨1£©µ±BCµÄ³¤Îª¶àÉÙʱ£¬µãCµ½A¡¢EÁ½µãµÄ¾àÀëÏàµÈ£¿
£¨2£©Óú¬xµÄ´úÊýʽ±íʾAC+CEµÄ³¤£»ÎʵãA¡¢C¡¢EÂú×ãʲôÌõ¼þʱ£¬AC+CEµÄÖµ×îС£¿
£¨3£©Èçͼ¢Ú£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãM£¨0£¬4£©£¬N£¨3£¬2£©£¬Çë¸ù¾Ý£¨2£©ÖеĹæÂɺͽáÂÛ¹¹Í¼ÔÚxÖáÉÏÕÒÒ»µãP£¬Ê¹PM+PN×îС£¬Çó³öµãP×ø±êºÍPM+PNµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸