精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别从A、B同时出发.
(1)经过几秒时,△PBQ的面积等于8平方厘米?
(2)在运动过程中,△PBQ的面积能否等于矩形ABCD的面积的四分之一?若存在,求出运动的时间;若不存在,说明理由.
分析:(1)先设经过t秒时,△PBQ的面积等于8平方厘米,根据AB=6厘米,BC=12厘米,点P从点A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,得出PB=6-t,BQ=2t,再根据三角形的面积公式即可求出答案;
(2)根据三角形的面积公式和矩形的面积公式列出方程,求出方程无解,从而得出不存在△PBQ的面积等于矩形ABCD的面积的四分之一的情况.
解答:解:(1)设经过t秒时,△PBQ的面积等于8平方厘米,
∵AB=6厘米,BC=12厘米,点P从点A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,
∴PB=6-t,BQ=2t,
∴S=
1
2
(6-t)×2t=8,
解得:t1=2,t2=4;
答:经过2秒或4秒时,△PBQ的面积等于8平方厘米;
(2)根据题意得:
1
2
(6-t)×2t=
1
4
×6×12,
整理得:t2-6t+18=0,
∵△=(-6)2-4×1×18=-36<0,
∴原方程无解,
∴不存在△PBQ的面积等于矩形ABCD的面积的四分之一.
点评:此题考查了一元二次方程的应用,用到的知识点是三角形、矩形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案