精英家教网 > 初中数学 > 题目详情
对于双曲线y=
6x
,当x<-2时,函数值y的取值范围是
-3<y<0
-3<y<0
分析:首先根据反比例函数y=
6
x
中,比例系数6>0,可知x与y同号,则当x<-2时,y<0,然后解不等式
6
y
<-2即可.
解答:解:∵双曲线y=
6
x
中,比例系数6>0,
∴图象分布在第一、三象限,
∵x<-2,∴y<0,
y=
6
x
时,x=
6
y

6
y
<-2,
∵y<0,
∴y>-3.
∴-3<y<0.
故答案为:-3<y<0.
点评:本题考查了反比例函数图象的性质,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读理解:对于任意正实数a,b,
∵(
a
-
b
2≥0,
∴a-2
ab
+b≥0,
∴a+b≥2
ab
,只有当a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值P,则a+b≥2
p

当a=b,a+b有最小值2
p

根据上述内容,回答下列问题:
(1)若x>0,x+
4
x
的最小值为
 

(2)探索应用:如图,已知A(-2,0),B(0,-3),点P为双曲线y=
6
x
(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解
对于任意正实数a,b,∵(
a
-
b
)2
≥0,∴a+b-2
ab
≥0,∴a+b≥2
ab
,只有当a=b时,等号成立.
结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p
只有当a=b时,a+b有最小值2
p

根据上述内容,回答下列问题:
(1)若m>0,只有当m=
 
时,m+
1
m
有最小值
 

(2)探索应用
如图,已知A(-2,0),B(0,-3),P为双曲线y=
6
x
(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
精英家教网
(3)实践应用
建筑一个容积为800m3,深为8m的长方体蓄水池,池壁每平方米造价为80元,池底每平方米造价为120元,如何设计池底的长、宽,使总造价最低?

查看答案和解析>>

同步练习册答案