分析 首先求出A、B两点的坐标,得出AB的长,再设P(a,b),根据△ABP的面积为10可以计算出b的值,然后再利用二次函数解析式计算出a的值即可得到P点坐标.
解答 解:∵当y=0时,x2-2x-3=0,
解得:x1=-1,x2=3;
∴A(-1,0),B(3,0),
∴AB=4,
设P(a,b),则a>0.
∵△ABP的面积为10,
∴$\frac{1}{2}$AB•|b|=10,
解得:b=±5,
当b=5时,a2-2a-3=5,
解得:a1=4,a2=-2(不合题意舍去),
∴P(4,5);
当b=-5时,a2-2a-3=-5,
a无实数根.
故所求P点坐标为(4,5).
点评 此题主要考查了二次函数图象上点的坐标特征,三角形的面积,关键是掌握凡是函数图象上的点必满足函数解析式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com