【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5且x<14,单位:m):
行驶次数 | 第一次 | 第二次 | 第三次 | 第四次 |
行驶情况 | x | ﹣x | x﹣3 | 2(5﹣x) |
行驶方向(填“东”或“西”) |
|
|
|
|
(1)请将表格补充完整;
(2)求经过连续4次行驶后,这辆出租车所在的位置;
(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.
【答案】(1)东,西,东,西;(2)向东(7﹣x)km;(3)12.
【解析】
(1)根据数的符号说明即可;
(2)把路程相加,求出结果,看结果的符号即可判断出答案;
(3)求出每个数的绝对值,相加求出总路程,再解方程求解即可.
解:(1)填表如下:
行驶次数 | 第一次 | 第二次 | 第三次 | 第四次 |
行驶情况 | x | ﹣x | x﹣3 | 2(5﹣x) |
行驶方向(填“东”或“西”) | 东 | 西 | 东 | 西 |
故答案为:东,西,东,西;
(2)x+(﹣x)+(x﹣3)+2(5﹣x)=7﹣x,
∵x>5且x<14,
∴7﹣x>0,
∴经过连续4次行驶后,这辆出租车所在的位置是向东(7﹣x)km.
(3)|x|+|﹣x|+|x﹣3|+|2(5﹣x)|=x+x+x﹣3﹣2(5﹣x)=x﹣13,
依题意有x﹣13=41,
解得x=12.
答:第一次行驶的路程x的值是12.
科目:初中数学 来源: 题型:
【题目】某工厂一周计划每日生产某产品100吨,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为正数,减少的吨数记为负数)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减/吨 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生产量最多的一天比生产量最少的一天多生产多少吨?
(2)本周总生产量是多少吨?比原计划增加了还是减少了?增减数为多少吨?
(3)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?(结果精确到0.01吨)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.
(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.
(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在李村河治理工程实验过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示,是双曲线的一部分.
(1)请根据题意,求y与x之间的函数表达式;
(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠15米,问该工程队需用多少天才能完成此项任务?
(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面三行数:
取每一行的第n个数,依次记为x、y、z.如上图中,当n=2时,x=﹣4,y=﹣3,z=2.
(1)当n=7时,请直接写出x、y、z的值,并求这三个数中最大的数与最小的数的差;
(2)已知n为偶数,且x、y、z这三个数中最大的数与最小的数的差为384,求n的值;
(3)若m=x+y+z,则x、y、z这三个数中最大的数与最小的数的差为 (用含m的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲同学手中藏有三张分别标有数字 , ,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果.
(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2的图象如图所示,则关于x的一元二次方程x2+x+a﹣1=0的根的存在情况是( )
A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.无法确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com