精英家教网 > 初中数学 > 题目详情
11.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=140°.

分析 连接BF,BD,根据已知条件得到$\widehat{BCF}$的度数+$\widehat{DAB}$的度数=440°,得到$\widehat{DF}$的度数=440°-360°=80°,根据圆内接四边形的性质即可得到结论.

解答 解:连接BF,BD,
∵∠A+∠C=220°,
∴$\widehat{BCF}$的度数+$\widehat{DAB}$的度数=440°,
∴$\widehat{DF}$的度数=440°-360°=80°,
∴∠DBF=40°,
∴∠E=180°-∠DBF=140°,
故答案为:140.

点评 本题考查了圆周角定理,多边形的内角与外角,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016~2017学年安徽省芜湖市九年级下学期第一次模拟考试数学试卷(解析版) 题型:解答题

计算:(﹣1)0+(﹣1)2015+()-1﹣2sin30°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要(  )名工人.
A.15B.10C.8D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.
(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;
(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.
①依题意将图2补全;
②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.
小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:
想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.
想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.
想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.

请你参考上面的想法,帮助小宇证明∠APE=2∠MAD.(一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.矩形ABCD中,AB=12,BC=9,点M从点A出发,沿AB方向在线段AB上以2个单位长度每秒的速度运动,以点M为圆心,MA长为半径画圆,过点M作NM⊥AB,交⊙M于点N,设运动时间为t秒.
(1)如图1,当⊙M与BD相切时,
①求t的值;
②求△CDN的面积.
(2)如图2,若点N在矩形ABCD内部,且当∠CND=90°时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在△ABC中,AB=AC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A、点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1
(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB2
(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB与AC相交于点Q.若AB=$\sqrt{2}$,设AP=x,求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一个不透明的袋中,装有5个黄球,8个红球,7个白球,它们除颜色外都相同,从袋中任意摸出一个球,是黄球的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为$\frac{1}{15}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.应用乘法公式进行简便运算:
(1)1232-122×124;
(2)(-79.8)2

查看答案和解析>>

同步练习册答案