精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2﹣(2k+1x+k2+2k0有两个实数根x1x2

1)求实数k的取值范围.

2)是否存在实数k,使得x1x2x12x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.

【答案】1k;(2)存在实数kk=﹣3

【解析】

1)根据判别式的意义得到△=(2k+124k2+2k)≥0,然后解不等式即可;

2)根据根与系数的关系得到x1+x22k+1x1x2k2+2k,再把x1x2x12x22=﹣16变形为﹣(x1+x22+3x1x2=﹣16,所以﹣(2k+12+3k2+2k)=﹣16,然后解方程后利用(1)中的范围确定满足条件的k的值.

解:(1)根据题意得△=(2k+124k2+2k)≥0

解得k

2)根据题意得x1+x22k+1x1x2k2+2k

x1x2x12x22=﹣16

x1x2﹣[(x1+x222x1x2]=﹣16

即﹣(x1+x22+3x1x2=﹣16

∴﹣(2k+12+3k2+2k)=﹣16

整理得k22k150

解得k15(舍去),k2=﹣3

k=﹣3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )

A. aB. aC. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小张投资开办了一个学生文具店.该店在开学前831日采购进一种今年新上市的文具袋.9月份(91日至930)进行30天的试销售,购进价格为20/个.销售结束后,得知日销售量y()与销售时间x()之间有如下关系:(,且x为整数);又知销售价格z(/)与销售时间x()之间的函数关系满足如图所示的函数图象.

(1)直接写出z关于x的函数关系式;

(2)求出在这30(91日至930)的试销中,日销售利润W()与销售时间x()之间的函数关系式;

(3)“十一黄金周期间,小张采用降低售价从而提高日销售量的销售策略.101日全天,销售价格比930日的销售价格降低而日销售量就比930日提高了(其中a为小于15的正整数),日销售利润比9月份最大日销售利润少569元,求a的值.(参考数据:)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O的直径AE10cm,∠B=∠EAC,则AC的长为(  )

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BDBCEF,作BHAF于点H,分别交ACCD于点GP,连结GEGF

1)试判断四边形BEGF的形状并说明理由.

2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9分)为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:

(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;

(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率

查看答案和解析>>

同步练习册答案