分析 (1)只要证明△BAD′≌△CAE′,即可推出BD=CE′,∠ACE′=∠B=45°,推出∠D′CE′=90°,由BC=$\sqrt{2}$AC,BC=BD′+CD′=CE′+CD′,推出C′E+CD′=$\sqrt{2}$AC;
(2)结论:∠D′CE′=90°,$\sqrt{3}$CE′+CD′=2AC.只要证明△BAD′∽△CAE′,推出∠ACE′=∠B=30°,$\frac{BD′}{CE′}$=$\frac{AB}{AC}$=$\sqrt{3}$,推出BD′=$\sqrt{3}$CE′,由∠ACB=90°-30°=60°,推出∠D′CE′=60°+30°=90°,由BC=2AC,BC=BD′+CD′,可得$\sqrt{3}$CE′+CD′=2AC;
(3)如图3中,作DM⊥AC于M.取BD的中点O,连接AO、CO.首先证明A、B、C、D四点共圆,推出∠ABD=∠MCD,△ABD∽△MCD,可得$\frac{AB}{AD}$=$\frac{CM}{DM}$=2,设DM=a,则CM=2a,则AM=$\sqrt{10}$-2a,在Rt△ADM中,由AM2+DM2=AD2,列出方程求出a,在Rt△CDM中,CD=$\sqrt{5}$a,在Rt△ABD中,BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$
在Rt△BCD中,BC=$\sqrt{D{B}^{2}-C{D}^{2}}$,再根据S四边形ABCD=S△ABD+S△BCD即可解决问题;
解答 解:(1)如图1中,
∵∠BAC=90°,∠B=45°,
∴∠ACB=∠B=45°,
∴AB=AC,
∵DE∥BC,
∴∠ADE=∠B=45°,∠AED=∠ACB=45°,
∴∠ADE=∠AED,
∴AE=AD,
∵∠BAC=∠D′AE′=90°,
∴∠BAD′=∠CAE′,
∴△BAD′≌△CAE′,
∴BD=CE′,∠ACE′=∠B=45°,
∴∠D′CE′=90°,
∵BC=$\sqrt{2}$AC,BC=BD′+CD′=CE′+CD′,
∴C′E+CD′=$\sqrt{2}$AC.
故答案为90,C′E+CD′=$\sqrt{2}$AC.
(2)结论:∠D′CE′=90°,$\sqrt{3}$CE′+CD′=2AC.理由如下:如图2中,
∵DE∥BC,
∴∠ADE=∠B=∠AD′E′=30°,
∴$\frac{AC}{AB}$=$\frac{AE′}{AD′}$=tan30°=$\frac{\sqrt{3}}{3}$,
∵∠BAC=∠D′AE′,
∴∠BAD′=∠CAE′,
∴△BAD′∽△CAE′,
∴∠ACE′=∠B=30°,$\frac{BD′}{CE′}$=$\frac{AB}{AC}$=$\sqrt{3}$,
∴BD′=$\sqrt{3}$CE′,
∵∠ACB=90°-30°=60°,
∴∠D′CE′=60°+30°=90°,
∵BC=2AC,BC=BD′+CD′,
∴$\sqrt{3}$CE′+CD′=2AC.
(3)如图3中,作DM⊥AC于M.取BD的中点O,连接AO、CO.
∵∠BAD=∠BCD=90°,BO=OD,
∴OA=OB=OD=OC,
∴A、B、C、D四点共圆,
∴∠ABD=∠MCD,
∵∠BAD=∠DMC,
∴△ABD∽△MCD,
∴$\frac{AB}{AD}$=$\frac{CM}{DM}$=2,设DM=a,则CM=2a,则AM=$\sqrt{10}$-2a,
在Rt△ADM中,∵AM2+DM2=AD2,
∴($\sqrt{10}$-2a)2+a2=22,
∴a=$\frac{\sqrt{10}}{5}$或$\frac{3\sqrt{10}}{5}$(舍弃),
在Rt△CDM中,CD=$\sqrt{5}$a=$\sqrt{2}$,
在Rt△ABD中,BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$
在Rt△BCD中,BC=$\sqrt{D{B}^{2}-C{D}^{2}}$=$\sqrt{20-2}$=3$\sqrt{2}$,
∴S四边形ABCD=S△ABD+S△BCD=$\frac{1}{2}$•AB•AD+$\frac{1}{2}$•BC•CD=$\frac{1}{2}$•4•2+$\frac{1}{2}$•3$\sqrt{2}$•$\sqrt{2}$=7.
点评 本题考查四边形综合题、等边三角形的性质、直角三角形的30度角性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理.四点共圆等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会添加常用辅助线,属于中考压轴题.
科目:初中数学 来源: 题型:选择题
A. | 垂心 | B. | 重心 | C. | 内心 | D. | 外心 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 若a>b,则2a>2b | B. | 若-2a<-2b,则a>b | ||
C. | 若a-1<b-1,则a>b | D. | 若a>b,则-a-1<-b-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | b2=c2-a2 | B. | a:b:c=3:4:5 | C. | ∠C=∠A-∠B | D. | ∠A:∠B:∠C=3:4:5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com