6£®ÔĶÁÏÂÁÐÎÄ×Ö£º

ÎÒÃÇÖªµÀ£¬¶ÔÓÚÒ»¸öͼÐΣ¬Í¨¹ýÁ½ÖÖ²»Í¬µÄ·½·¨¼ÆËãËüµÄÃæ»ý£¬¿ÉÒԵõ½Ò»¸öÊýѧµÈʽ£¬ÀýÈçÓÉͼ1¿ÉÒԵõ½£¨a+2b£©£¨a+b£©=a2+3ab+2b2£®
Çë½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Ð´³öͼ2ÖÐËù±íʾµÄÊýѧµÈʽ£¨a+b+c£©2=a2+b2+c2+2ab+2ac+2bc£»
£¨2£©ÀûÓã¨1£©ÖÐËùµÃµ½µÄ½áÂÛ£¬½â¾öÏÂÃæµÄÎÊÌ⣺ÒÑÖªa+b+c=11£¬ab+bc+ac=38£¬Çóa2+b2+c2µÄÖµ£»
£¨3£©Í¼3Öиø³öÁËÈô¸É¸ö±ß³¤ÎªaºÍ±ß³¤ÎªbµÄСÕý·½ÐÎֽƬ¼°Èô¸É¸ö±ß³¤·Ö±ðΪa¡¢bµÄ³¤·½ÐÎֽƬ£¬
¢ÙÇë°´ÒªÇóÀûÓÃËù¸øµÄֽƬƴ³öÒ»¸ö¼¸ºÎͼÐΣ¬²¢»­ÔÚͼ3Ëù¸øµÄ·½¿òÖУ¬ÒªÇóËùÆ´³öµÄ¼¸ºÎͼÐεÄÃæ»ýΪ2a2+5ab+2b2£¬
¢ÚÔÙÀûÓÃÁíÒ»ÖÖ¼ÆËãÃæ»ýµÄ·½·¨£¬¿É½«¶àÏîʽ2a2+5ab+2b2·Ö½âÒòʽ£®
¼´2a2+5ab+2b2=£¨2a+b£©£¨a+2b£©£®

·ÖÎö £¨1£©Ö±½Ó¸ù¾ÝͼÐÎд³öµÈʽ£»
£¨2£©½«ËùÇóʽ×ÓÓ루1£©µÄ½áÂ۶Աȣ¬µÃ³ö±äÐεÄʽ×Ó£¬´úÈëÇóÖµ¼´¿É£»
£¨3£©¢Ù»­³öͼÐΣ¬´ð°¸²»Î¨Ò»£¬
¢Ú¸ù¾ÝԭͼÐÎÃæ»ý=×éºÏºó³¤·½ÐεÄÃæ»ýµÃ³öµÈʽ£®

½â´ð £¨1£©£¨a+b+c£©2=a2+b2+c2+2ab+2ac+2bc£»
¹Ê´ð°¸Îª£º£¨a+b+c£©2=a2+b2+c2+2ab+2ac+2bc£»

£¨2£©a2+b2+c2=£¨a+b+c£©2-2ab-2ac-2bc£¬
=112-2¡Á38£¬
=45£»
£¨3£©¢ÙÈçͼËùʾ£¬


¢ÚÈçÉÏͼËùʾµÄ¾ØÐÎÃæ»ý=£¨2a+b£©£¨a+2b£©£¬
ËüÊÇÓÉ2¸ö±ß³¤ÎªaµÄÕý·½ÐΡ¢5¸ö±ß³¤·Ö±ðΪa¡¢bµÄ³¤·½ÐΡ¢2¸ö±ß³¤ÎªbµÄСÕý·½ÐÎ×é³É£¬ËùÒÔÃæ»ýΪ2a2+5ab+2b2£¬
Ôò2a2+5ab+2b2=£¨2a+b£©£¨a+2b£©£¬
¹Ê´ð°¸Îª£º2a2+5ab+2b2=£¨2a+b£©£¨a+2b£©£®

µãÆÀ ±¾ÌâÊÇÒ»¸öÔĶÁÀí½âÎÊÌ⣬¿¼²éÁËÍêȫƽ·½Ê½µÄ¼¸ºÎ±³¾°ÎÊÌâ¼°Òòʽ·Ö½âµÄÓ¦Óã¬Ó뼸ºÎͼÐÎÏà½áºÏ£¬Í¨¹ýÃæ»ý·¨Ö±¹ÛÀí½â¡¢½â¾öÍêȫƽ·½¹«Ê½µÄÍƵ¼¹ý³Ì£¬Í¨¹ý¼¸ºÎͼÐÎÖ®¼äµÄÊýÁ¿¹Øϵ¶ÔÍêȫƽ·½¹«Ê½×ö³ö¼¸ºÎ½âÊÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®×ÐϸÔĶÁÏÂÃæÀýÌ⣬½â´ðÎÊÌ⣺
ÀýÌ⣺ÒÑÖª¶þ´ÎÈýÏîʽ
ÀýÌ⣺ÒÑÖª¶þ´ÎÈýÏîʽx2-4x+mÓÐÒ»¸öÒòʽÊÇ£¨x+3£©£¬ÇóÁíÒ»¸öÒòʽÒÔ¼°mµÄÖµ£®
½â£ºÉèÁíÒ»¸öÒòʽΪ£¨x+n£©£¬µÃ
x2-4x+m=£¨x+3£©£¨x+n£©
Ôòx2-4x+m=x2+£¨n+3£©x+3n
¡à$\left\{\begin{array}{l}{n+3=-4}\\{m=3n}\end{array}\right.$
½âµÃ£ºn=-7£¬m=-21
¡àÁíÒ»¸öÒòʽΪ£¨x-7£©£¬mµÄֵΪ-21
ÎÊÌ⣺£¨1£©·ÂÕÕÒÔÉÏ·½·¨½â´ðÏÂÃæÎÊÌ⣺ÒÑÖª¶þ´ÎÈýÏîʽ2x2-5x+kÓÐÒ»¸öÒòʽÊÇ£¨2x-3£©£¬ÇóÁíÒ»¸öÒòʽÒÔ¼°kµÄÖµ£®
£¨2£©Èô¶þ´ÎÈýÏîʽx2-5x+6¿É·Ö½âΪ£¨x-2£©£¨x+a£©£¬Ôòa=-3£®
£¨3£©Èô¶þ´ÎÈýÏîʽ2x2+bx-5¿É·Ö½âΪ£¨2x-1£©£¨x+5£©£¬Ôòb=9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®½èÖúÒ»¸±Èý½Ç³ß£¬ÄãÄÜ»­³öÏÂÃæÄĸö¶ÈÊýµÄ½Ç£¨¡¡¡¡£©
A£®15¡ãB£®25¡ãC£®35¡ãD£®55¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Òòʽ·Ö½â£º
£¨1£©a2+4a+4                       
£¨2£©9£¨x+y£©2-£¨x-y£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª´úÊýʽx2+px+q£®
£¨1£©µ±x=1ʱ£¬´úÊýʽµÄֵΪ2£»µ±x=-2ʱ£¬´úÊýʽµÄֵΪ11£¬Çóp¡¢q£»
£¨2£©µ±x=$\frac{5}{2}$ʱ£¬Çó´úÊýʽµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚµÈʽy=kx+bÖУ¬µ±x=1ʱ£¬y=-2£»µ±x=-1ʱ£¬y=-4£®
£¨1£©Çó³ök£¬bµÄÖµ£»
£¨2£©µ±x=-2016ʱ£¬ÇóyµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Òòʽ·Ö½â£º
£¨1£©6£¨x+y£©2-2£¨x-y£©£¨x+y£©                
£¨2£©x4-8x2y2+16y4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¡ÑO¼°¡ÑOÍâÒ»µãP£¬¹ýµãP×÷³ö¡ÑOµÄÒ»ÌõÇÐÏߣ¨Ö»ÓÐÔ²¹æºÍÈý½Ç°åÕâÁ½ÖÖ¹¤¾ß£©£¬ÒÔÏÂÊǼס¢ÒÒÁ½Í¬Ñ§µÄ×÷Òµ£º

¼×£º¢ÙÁ¬½ÓOP£¬×÷OPµÄ´¹Ö±Æ½·ÖÏßl£¬½»OPÓÚµãA£»
¢ÚÒÔµãAΪԲÐÄ¡¢OAΪ°ë¾¶»­»¡¡¢½»¡ÑOÓÚµãM£»
¢Û×÷Ö±ÏßPM£¬ÔòÖ±ÏßPM¼´ÎªËùÇó£¨Èçͼ1£©£®
ÒÒ£º¢ÙÈÃÖ±½ÇÈý½Ç°åµÄÒ»ÌõÖ±½Ç±ßʼÖÕ¾­¹ýµãP£»
¢Úµ÷ÕûÖ±½ÇÈý½Ç°åµÄλÖã¬ÈÃËüµÄÁíÒ»ÌõÖ±½Ç±ß¹ýÔ²ÐÄO£¬Ö±½Ç¶¥µãÂäÔÚ¡ÑOÉÏ£¬¼ÇÕâʱֱ½Ç¶¥µãµÄλÖÃΪµãM£»
¢Û×÷Ö±ÏßPM£¬ÔòÖ±ÏßPM¼´ÎªËùÇó£¨Èçͼ2£©£®
¶ÔÓÚÁ½È˵Ä×÷Òµ£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¼×ÒÒ¶¼¶ÔB£®¼×ÒÒ¶¼²»¶ÔC£®¼×¶Ô£¬ÒÒ²»¶ÔD£®¼×²»¶Ô£¬ÒѶÔ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ£¨x2-4x+2£©£¨x2-4x+6£©+4½øÐÐÒòʽ·Ö½âµÄ¹ý³Ì£®
½â£ºÉèx2-4x=y
ԭʽ=£¨y+2£©£¨y+6£©+4£¨µÚÒ»²½£©
=y2+8y+16£¨µÚ¶þ²½£©
=£¨y+4£©2£¨µÚÈý²½£©
=£¨x2-4x+4£©2£¨µÚËIJ½£©
ÇëÎÊ£º
£¨1£©¸ÃͬѧµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁËÒòʽ·Ö½âµÄC
A£®ÌáÈ¡¹«Òòʽ·¨    B£®Æ½·½²î¹«Ê½
C£®Á½ÊýºÍµÄÍêȫƽ·½¹«Ê½    D£®Á½Êý²îµÄÍêȫƽ·½¹«Ê½
£¨2£©¸ÃͬѧÒòʽ·Ö½âµÄ½á¹ûÊÇ·ñ³¹µ×£¿²»³¹µ×£®£¨Ìî¡°³¹µ×¡±»ò¡°²»³¹µ×¡±£©
Èô²»³¹µ×£¬ÇëÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û£¨x-2£©4
£¨2£©ÇëÄãÄ£·ÂÒÔÉÏ·½·¨³¢ÊÔ¶Ô¶àÏîʽ£¨x2-2x£©£¨x2-2x+2£©+1½øÐÐÒòʽ·Ö½â£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸