【题目】如图,数轴上A、B两点对应的有理数分别为20和30,点P和点Q分别同时从点A和点O出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t秒.
(1)当t=2时,则P、Q两点对应的有理数分别是;PQ=;
(2)点C是数轴上点B左侧一点,其对应的数是x,且CB=2CA,求x的值;
(3)在点P和点Q出发的同时,点R以每秒8个单位长度的速度从点B出发,开始向左运动,遇到点Q后立即返回向右运动,遇到点P后立即返回向左运动,与点Q相遇后再立即返回,如此往返,直到P、Q两点相遇时,点R停止运动,求点R运动的路程一共是多少个单位长度?点R停止的位置所对应的数是多少?
【答案】
(1)24和8;16
(2)解:∵CB=2CA,
∴30﹣x=2(x﹣20)或30﹣x=2(20﹣x),
∴x= 或10
(3)解:设t秒后P、Q相遇.则有4t﹣2t=20,
∴t=10,
∴R运动的路程一共是8×10=80.此时P、Q、R在同一点,所以点R的位置所对应的数是40
【解析】解:(1)t=2时,OQ=2×4=8,PA=2×2=4,OP=24, ∴P、Q分别表示24和8,PQ=24﹣8=16,
所以答案是24和8,16.
【考点精析】本题主要考查了数轴和代数式求值的相关知识点,需要掌握数轴是规定了原点、正方向、单位长度的一条直线;求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】下列运算正确的是( )
A.﹣2x2y3xy2=﹣6x2y2
B.(﹣x﹣2y)(x+2y)=x2﹣4y2
C.6x3y2÷2x2y=3xy
D.(4x3y2)2=16x9y4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D
(1)求证:CD为⊙O的切线
(2)若DC+DA=6,⊙O的直径为10,求AB的长度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里,装有三个分别标有数字1,2,3的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放进盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)请用树状图或列表分析,写出(x,y)所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数 图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使得BM=2DE,连接ME
①求证:ME⊥BC;
②求∠EMC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设[a]表示不超过a的最大整数,例如:[2.3]=2,[﹣4 ]=﹣5,[5]=5.
(1)求[2 ]+[﹣3.6]﹣[﹣7]的值;
(2)令[a]=a﹣[a],求{2 }﹣[﹣2.4]+{﹣6 }.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如题图,已知A(-4,2),B(n,-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求m,n的值;
(2)求一次函数的关系式;、
(3)结合图象直接写出一次函数小于反比例函数的x的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学为了解学生的体质健康状况,随机抽取若干名学生进行测试,测试结果分为A:良好、B:合格、C:不合格三个等级.并根据测试结果绘制成如下两幅尚不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)此次调查共抽取了 人,扇形统计图中C部分圆心角的度数为 ;
(2)补全条形统计图;
(3)若该校共有1800名学生,请估计体质健康状况为“合格”的学生有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com