精英家教网 > 初中数学 > 题目详情
如图,在?ABCD中,AC与BD相交于点O,则下列结论不一定成立的是(  )
A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD
D.

试题分析:根据平行四边形的性质(①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分)判断即可.
A、∵四边形ABCD是平行四边形,
∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;
B、∵四边形ABCD是平行四边形,
∴CD=AB,正确,不符合题意;
C、∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,正确,不符合题意;
D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;
故选D.
考点: 平行四边形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上。

(1)、求证:△ABE≌△ADF;
(2)、若等边△AEF的周长为6,求正方形ABCD的边长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了探索代数式的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于      ,此时       ;
(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某数学兴趣小组开展了一次课外活动,过程如下:如图,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.

(1)求证:DP=DQ;
(2)如图,小明在图①的基础上做∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)如图,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E、F分别是AM、MR的中点,则EF的长随着M点的运动(   )
A.变短B.变长C.不变D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是(   )

A.S1=S2=S3        B.S1=S2<S3          CS1=S3<S2       D.S2=S3<S1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

菱形的周长为8 cm,高为1 cm,则该菱形较大的内角的度数为(   )
A.160°B.150°C.135°D.120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

菱形ABCD中,若对角线长AC=8cm,BD=6cm.则边长AB=       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中正确的是(      )
A.一组对边平行的四边形是平行四边形
B.两条对角线相等的平行四边形是矩形
C.两边相等的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形

查看答案和解析>>

同步练习册答案