精英家教网 > 初中数学 > 题目详情

【题目】2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.

根据上述信息,解答下列问题:
(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.

【答案】
(1)30;144°;
(2)

解:根据题意列表如下:

设竖列为小红抽取的跑道,横排为小花抽取的跑道,

小红 小花

1

2

3

4

5

1

(2,1)

(3,1)

(4,1)

(5,1)

2

(1,2)

(3,2)

(4,2)

(5,2)

3

(1,3)

(2,3)

(4,3)

(5,3)

4

(1,4)

(2,4)

(3,4)

(5,4)

5

(1,5)

(2,5)

(3,5)

(4,5)

记小红和小花抽在相邻两道这个事件为A,


【解析】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
故答案为:30,144°;
补全统计图如图所示:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:
①∠1=∠2=22.5°;
②点C到EF的距离是 -1;
③△ECF的周长为2;
④BE+DF>EF.
其中正确的结论是 . (写出所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为(
A.6
B.13
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,CD切⊙O于点E,AD、BC分别切⊙O于A、B两点,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切点E在半圆上运动(A、B两点除外),则线段AD与BC的积为定值.其中正确的个数是(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.

根据上述信息,解答下列问题:
(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,

(1)求证:四边形AEBD是菱形;
(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图形既关于点O中心对称,又关于直线AC,BD对称,AC=10,BD=6,已知点E,M是线段AB上的动点(不与端点重合),点O到EF,MN的距离分别为h1 , h2 , △OEF与△OGH组成的图形称为蝶形.
(1)求蝶形面积S的最大值;
(2)当以EH为直径的圆与以MQ为直径的圆重合时,求h1与h2满足的关系式,并求h1的取值范围.

查看答案和解析>>

同步练习册答案