精英家教网 > 初中数学 > 题目详情
音乐喷泉的某一个喷水口,喷出的一束水流形状是抛物线,在这束水流所在平面建立平面直角坐标系,以水面与此面的相交线为x轴,以喷水管所在的铅垂线为y轴,喷出的水流抛物线的解析式为:y=-x2+bx+2.但控制进水速度,可改变喷出的水流达到的最大高度,及落在水面的落点距喷水管的水平距离.
(1)喷出的水流抛物线与抛物线y=ax2的形状相同,则a=______;
(2)落在水面的落点距喷水管的水平距离为2个单位长时,求水流抛物线的解析式;
(3)求出(2)中的抛物线的顶点坐标和对称轴;
(4)对于水流抛物线y=-x2+bx+2.当b=b1时,落在水面的落点坐标为M(m,0),当b=b2时,落在水面的落点坐标为N(n,0),点M与点N都在x轴的正半轴,且点M在点N的右边,试比较b1与b2的大小.
(1)a=-1

(2)落在水面的落点距喷水管的水平距离为2个单位长时,
即点(2,0)在抛物线y=-x2+bx+2上
得:0=-4+2b+2
有b=1
抛物线的解析式为y=-x2+x+2

(3)y=-x2+x+2=-(x-
1
2
2+
9
4

抛物线的顶点坐标为(
1
2
9
4
),对称轴为直线x=
1
2


(4)∵点M与点N都在x轴的正半轴,且点M在点N的右边
∴m>n>0
∴m-n>0,mn>0.
∵当b=b1时,落在水面的落点坐标为M(m,0)
∴0=-m2+b1m+2
∴b1=
m2-2
m

同理b2=
n2-2
n

b1-b2=
m2-2
m
-
n2-2
n
=
m2n-2n-mn2+2m
mn
=
mn(m-n)+2(m-n)
mn
=
(m-n)(mn+2)
mn

∴b1-b2>0,
∴b1>b2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(-1,0),点B的坐标为(3,0),二次函数y=x2的图象记为抛物线l1

(1)平移抛物线l1,使平移后的抛物线经过A、B两点,记为抛物线l2,求抛物线l2的函数表达式;
(2)设抛物线l2的顶点为C,请你判断y轴上是否存在点K,使得∠BKC=90°,若存在,求出K点坐标,若不存在,请说明理由;
(3)抛物线l2与y轴交于点D,点P是线段BD上的一个动点,过点P,作y轴的平行线,交抛物线l2于点E,求线段PE长度的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+c(a≠0)与直线y=kx+b(k≠0)相交于A(2,1)、B(1,-1)两点,你能求出抛物线和直线的函数表达式吗?画出草图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-
3
x+
3
与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,
求:(1)点C的坐标;
(2)图象经过A、B、C三点的二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面之间坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)点C的坐标为______;
(2)若抛物线y=ax2+bx经过C,A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,求出此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是(  )
A.y=x+1B.y=x-1C.y=x2-x+1D.y=x2-x-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种植基地对去年瓜果生产基地的甲、乙两种瓜果的生产销售进行了统计,发现去年1至12月每千克甲种瓜果的销售价格y1(元)与月份x(1≤x≤12,x为整数)之间存在如图所示变化趋势,每千克乙种瓜果销售价格y2(元)与月份x(1≤x≤12,x为整数)之间的函数关系如下表:
月份x1234
销售价格y2(元)7.757.57.257
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y2与x之间的函数关系式,根据如图所示的变化趋势,求出y1与x之间满足的一次函数关系式;
(2)若去年每千克甲种瓜果生产成本为2.5元,每千克乙种瓜果生产成本为2元,且去年1至12月甲种瓜果销售量p1(万千克)与月份x满足关系式p1=0.2x+1(1≤x≤12,x为整数),去年1至12月乙种瓜果销售量p2(万千克)与月份x满足关系式p2=0.4x+0.8(1≤x≤12,x为整数),求去年上半年哪一个月同时出售甲、乙两种瓜果的总利润最大?并求出其最大利润;
(3)预计今年1至5月,受物价上涨因素的影响,该基地甲种瓜果生产成本每千克比去年增加20%,乙种瓜果的生产成本每千克比去年增加1元,而甲种瓜果每千克售价在去年12月份的基础上提高m%,乙种瓜果每千克售价在去年12月份的基础上提高1.2m%,与此同时,每月甲种瓜果的销售量均在去年12月份的基础上减少3m%,每月乙种瓜果的销售量均在去年12月份的基础上减少了2m%,这样,预计今年1至5月销售乙种瓜果获得的总利润比1至5月销售甲种瓜果获得的总利润多40万元,请参考以下数据,估算m的整数值(m≤10).
(参考数据:322=1024,332=1089,342=1156,352=1225)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一个运动员投掷铅球的抛物线图,解析式为y=-
1
12
x2+
2
3
x+
5
3
(单位:米),其中A点为出手点,C点为铅球运行中的最高点,B点铅球落地点.求:
(1)出手点A离地面的高度;
(2)最高点C离地面的高度;
(3)该运动员的成绩是多少米?

查看答案和解析>>

同步练习册答案