精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,则∠BFD的度数是(  )
A、60°B、90°C、45°D、120°
分析:首先根据边角边定理证明△ABE≌△ACD,进而根据旋转的性质,易知∠BFD的度数.
解答:解:在△ABE与△ACD中,
AB⊥AC,AD⊥AE,
∴∠BAC=∠EAD,∠BAC+∠CAE=∠EAD+∠CAE
           AB=AC
∠BAE=∠CAD
           AE=AD

∴△ABE≌△ACD(SAS),
∴△ACD可看做△ABE按顺时针方向,旋转90°得到的三角形.
∴BE⊥CD交于点F
∴∠BFD=90°
故选B
点评:本题考查全等三角形的性质与判定、旋转的性质.解决本题的关键是将求角的问题转化为旋转的问题来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知AB=AC,AD=AE.求证BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,已知AB=AC,AD=AE,BD=EC,则图中有
2
对全等三角形,它们是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步练习册答案