分析 (1)①只要证明△QBP∽△ABC即可,②代入比例式可以求出t.
(2)由△BPD∽△BAC得$\frac{BD}{BC}=\frac{BP}{BA}$列出方程即可求出t.
(3)由△BPE∽△BAC得$\frac{BP}{AB}=\frac{PE}{AC}$求出PE,代入三角形面积公式即可.
解答 解:(1)①∵PQ⊥AB,∠C=90°,
∴∠BPQ=∠C=90°,
∵∠QBP=∠ABC,
∴△QBP∽△ABC,
∴$\frac{BP}{BC}=\frac{BQ}{AB}$,
②在Rt△ABC中,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
由①知,BP•BA=BQ•BC,
∴5(5-t)=4t,解得 t=$\frac{25}{9}$.
(2)当PB=PQ时,过点P作PD⊥BC于D(如图4),则BD=DQ,PD∥AC.
∴△BPD∽△BAC,
∴$\frac{BD}{BC}=\frac{BP}{BA}$,即$\frac{1}{2}$t•5=4(5-t),解得 t=$\frac{40}{13}$,
(3)过点P作PE⊥BC于E,则PE∥AC(如图5).
∵PE∥AC,
∴△BPE∽△BAC,
∴$\frac{BP}{AB}=\frac{PE}{AC}$,即 $\frac{5-t}{5}=\frac{PE}{3}$,解得 PE=$\frac{3}{5}$(5-t),
∴S△PBQ=$\frac{1}{2}$BQ•PE=$\frac{9}{5}$,即 $\frac{1}{2}$•t•$\frac{3}{5}$(5-t)=$\frac{9}{5}$,
整理,得t2-5t+6=0.解这个方程,得t1=2,t2=3,
∵0<t≤4,∴当t为2s或3s时.△PBQ的面积等于$\frac{9}{5}$cm2.
点评 本题考查相似三角形的判定和性质、平行成比例等知识,学会用方程的思想解决问题,灵活运用相似三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com