精英家教网 > 初中数学 > 题目详情

已知抛物线

(1)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;

(2)若,且当x=0时,对应的y>0;当x=1时,对应的y>0,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

解:(1)当时,抛物线为,且与轴有公共点.

对于方程,判别式≥0,有

①当时,由方程,解得

此时抛物线为轴只有一个公共点

②当时,

时,

时,

由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为

应有  即

解得

综上,.     

(2)对于二次函数

由已知时,时,

,∴

于是.而,∴,即

.  

∵关于的一元二次方程的判别式

,  

∴抛物线轴有两个公共点,顶点在轴下方.

又该抛物线的对称轴

,得,∴

又由已知时,时,,观察图象,

可知在范围内,该抛物线与轴有两个公共点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的精英家教网正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
152

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
140
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装两盏警示灯,求这两盏灯的水平距离EF(精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2(a>0)上有A、B两点,它们的横坐标分别为-1,2.如果△AOB(O是坐标原点)是直角三角形,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线经过点A(1,0)、B(2,-3)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)如果点D在这条抛物线上,点D关于这条抛物线对称轴的对称点是点C,求点D的坐标.

查看答案和解析>>

同步练习册答案