精英家教网 > 初中数学 > 题目详情

【题目】一副三角板按图1所示的位置摆放,将△DEF绕点A.F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()

A. 75cm2 B. (25+25)cm2 C. (25+)cm2 D. (25+)cm2

【答案】B

【解析】

试题一副三角板按图所示的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,测得CG10cm,因为,所以逆时针旋转60°AD在等腰直角三角形的腰AB上,

如图所示

根据旋转的特征,旋转前后图形的面积不变,所以旋转前后三角形重叠(阴影)部分的面积不变,设等腰直角三角形的腰AC长为a,等腰三角形斜边上的高等于斜边的一半,解得h=,则由三角形的面积公式得,所以=25cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:

A

B

C

D

E

平均分

方差

数学

71

72

69

68

70

  

2

英语

88

82

94

85

76

85

  

(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的方差.

(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,从标准分看,标准分大的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克的防锈漆?(铁的密度为7.8g/cm3 ,1千克防锈漆可以涂4m2的铁器面,三视图单位为cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)若⊙O的半径为3,ED=4,EO的延长线交⊙OF,连DF、AF,求△ADF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与BC重合),连接AD,作∠ADE=40°DE交线段ACE

1)点DBC运动时,∠BDA逐渐变______(填);设∠BAD=x°,∠BDA=y°,求yx的函数关系式;

2)当DC的长度是多少时,ABD≌△DCE,请说明理由;

3)在点D的运动过程中,ADE的形状也在改变,当∠BDA等于多少度时,ADE是等腰三角形?判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在_______分钟内,师生不能呆在教室.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察推理:如图1ABC中,∠ACB=90°AC=BC,直线l过点C,点AB在直线l同侧,BDlAEl,垂足分别为DE

1)求证:AEC≌△CDB

2)类比探究:如图2RtABC中,∠ACB=90°AC=6,将斜边AB绕点A逆时针旋转90°AB,连接B′C,求AB′C的面积;

3)拓展提升:如图3,∠E=60°EC=EB=4cm,点OBC上,且OC=3cm,动点P从点E沿射线EC2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示.在△ABC中,AB=AC,点DBC上一点,DEACAB于点EDFABAC于点F,则四边形AEDF的周长等于这个三角形的(  )

A.周长B.周长的一半

C.两腰长和的一半D.两腰长的和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

同步练习册答案