【题目】如图,在ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,OC.
(1)求证:四边形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的长.
【答案】(1)见解析;(2).
【解析】
(1)根据邻边相等的平行四边形是菱形即可证明;
(2)过点O作OG⊥BC于点G.分别在Rt△OEG,Rt△OCG中解直角三角形即可;
解:(1)证明:∵四边形ABCD是平行四边形,
∴BC∥AD,BC=AD.
∵E,F分别是BC,AD的中点,
∴.
∴BE=AF.
∴四边形ABEF是平行四边形.
∵BC=2AB,
∴AB=BE.
∴平行四边形ABEF是菱形.
(2)过点O作OG⊥BC于点G.
∵E是BC的中点,BC=8,
∴BE=CE=4.
∵四边形ABEF是菱形,∠ABC=60°,
∴∠OBE=30°,∠BOE=90°.
∴OE=2,∠OEB=60°.
∴GE=1,OG=.
∴GC=5.
∴OC=2.
科目:初中数学 来源: 题型:
【题目】如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“关联点”有_____;
(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,点从点出发,沿着矩形的边顺时针方向运动一周回到点,则点围成的图形面积与点运动路程之间形成的函数关系式的大致图象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,分别是上的点,且,则有结论成立;
如图2,在四边形中,分别是上的点,且是的一半, 那么结论是否仍然成立?若成立,请证明;不成立,请说明理由.
若将中的条件改为:如图3,在四边形中,,延长到点,延长到点,使得仍然是的一半,则结论是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,是延长线上的定点,为边上的一个动点,连接,将射线绕点顺时针旋转,交射线于点,连接.
小东根据学习函数的经验,对线段的长度之间的关系进行了探究.
下面是小东探究的过程,请补充完整:
(1)对于点在上的不同位置,画图、测量,得到了线段的长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
0.00 | 0.53 | 1.00 | 1.69 | 2.17 | 2.96 | 3.46 | 3.79 | 4.00 | |
0.00 | 1.00 | 1.74 | 2.49 | 2.69 | 2.21 | 1.14 | 0.00 | 1.00 | |
4.12 | 3.61 | 3.16 | 2.52 | 2.09 | 1.44 | 1.14 | 1.02 | 1.00 |
在的长度这三个量中,确定_____的长度是自变量,_____的长度和_____的长度都是这个自变量的函数;
(2)在同一平面直角坐标系中,画出(1)中所确定的两个函数的图象;
(3)结合画出的函数图象,解决问题:当时,的长度约为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一种简易的手机架,将其结构简化为图2,由靠板,底座和顶板组成,测得,,,,,.
(1)求手机架的高(点到的距离);
(2)请通过计算确定厚度为的手机放置在手机架上能否有调节角度的空间.
(参考数据:,,,,结果精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.
(1)求证:直线l是⊙O的切线;
(2)若PA=6,求PB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com