【题目】如图,直线y=2x+4与反比例函数y= 的图象相交于A(﹣3,a)和B两点
(1)求k的值;
(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;
(3)直接写出不等式 >x的解集.
【答案】
(1)∵点A(﹣3,a)在y=2x+4与y= 的图象上,
∴2×(﹣3)+4=a,
∴a=﹣2,
∴k=(﹣3)×(﹣2)=6;
(2)∵M在直线AB上,
∴M( ,m),N在反比例函数y= 上,
∴N( ,m),
∴MN=xN﹣xM= ﹣ =4或xM﹣xN= ﹣ =4,
解得:∵m>0,
∴m=2或m=6+4 ;
(3)x<﹣1或5<x<6,
由 >x得: ﹣x>0,
∴ >0,
∴ <0,
∴ 或 ,
结合抛物线y=x2﹣5x﹣6的图象可知,由 得
,
∴ 或 ,
∴此时x<﹣1,
由 得, ,
∴ ,
解得:5<x<6,
综上,原不等式的解集是:x<﹣1或5<x<6.
【解析】(1)把点A(﹣3,a)分别代入y=2x+4与y= 中,即可求出k;(2)由M、N点均在双曲线上,用m的代数式表示两点坐标,根据MN=4,即
xN-xM=4,建立方程求出m;(3)变形不等式 ,即,分两种情况讨论:或,运用数形结合的思想,画出y=的图象,找出与x轴交点的横坐标,即可求出.
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系中的位置如图所示,每个小正方形的边长为1,点A、B、C都在格点上,直线MN经过点(1,0)且垂直于轴,若和△ABC关于直线MN成轴对称.(1)请在网格中画出;(2)请直接写出的坐标;(3)若直线上有一点P,要使△ACP的周长最小,请在图中画出点P的位置(保留画图痕迹).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,DE=DF,DE⊥AB,DF⊥AC,垂足分别是E、F.现有下列结论:①AD平分∠BAC;②AD⊥BC;③AD上任意一点到AB、AC的距离相等;④AD上任意一点到BC两端点的距离相等.其中正确结论的个数有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点O是AC的中点,AC=2AB,延长AB至G,使BG=AB,连接GO交BC于E,延长GO交AD于F,连接AE.
求证:(1)△ABC≌△AOG;
(2)猜测四边形AECF的形状并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的度数为( )
A. 100° B. 80° C. 70° D. 50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等腰直角三角形,∠ACB=90°,CD是斜边AB上的中线,且CD=2,点E是线段BD上任意一点,以CE为边向左侧作正方形CEFG,EF交BC于点M,连接BG交EF于点N.
(1)证明:△CAE≌△CBG;
(2)设DE=x,BN=y,求y关于x的函数关系式,并求出y的最大值;
(3)当DE=2 ﹣2时,求∠BFE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B是线段AC上一点,AC=4AB,AB=6cm,直线MN经过线段BC的中点P.
(1)图中共有线段______条,图中共有射线______条.
(2)图中有______组对顶角,与∠MPC互补的角是______.
(3)线段AP的长度是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了 h;
(2)求线段DE对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com