精英家教网 > 初中数学 > 题目详情
如图,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=,则下底BC的长为 __________.
10.

试题分析:过A作AE∥CD,把梯形分成平行四边形和直角三角形,利用平行四边形的对边相等得到CE=AD,所以BE可以求出,在直角三角形中,根据∠B=30°,利用勾股定理求出BE,BC的长也就可以求出了.
试题解析:如图,过A作AE∥CD交BC于点E,

∵AD∥BC,∴四边形AECD是平行四边形,
∴CE=AD=4,
∵∠B=30°,∠C=60°,
∴∠BAE=90°,
∴AE=BE
在Rt△ABE中,BE2=AB2+AE2
即BE2=(2+(BE)2
BE2=27+BE2
BE2=36,
解得BE=6,
∴BC=BE+EC=6+4=10.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在正方形外侧作直线,点关于直线的对称点为,连接,其中交直线于点
(1)依题意补全图1;
(2)若,求的度数;
(3)如图2,若,用等式表示线段之间的数量关系,并证明.
   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中 AB‖DC,DB平分∠ADC,过点A作AE‖BD,交CD的延长线于点E,且∠C=2∠E
求证:梯形ABCD是等腰梯形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.
(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,AB∥DC, DB平分∠ADC, E是CD的延长线上一点,且
(1)求证:四边形ABDE是平行四边形.
(2)若DB⊥CB,∠BCD=60°,CD=12,作AH⊥BD于H,求四边形AEDH的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法不正确的是(  )
A.有两组对边分别平行的四边形是平行四边形
B.平行四边形的对角线互相平分
C.平行四边形的对角互补,邻角相等
D.平行四边形的对边平行且相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若口ABCD中一内角平分线和某边相交把这条边分成1cm、2cm的两条线段,则口ABCD的周长是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为
A.15°或30°B.30°或45°
C.45°或60°D.30°或60°

查看答案和解析>>

同步练习册答案