精英家教网 > 初中数学 > 题目详情

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

【答案】
(1)

证明:如图1中,

连接BD.

∵点E,H分别为边AB,DA的中点,

∴EH∥BD,EH= BD,

∵点F,G分别为边BC,CD的中点,

∴FG∥BD,FG= BD,

∴EH∥FG,EH=GF,

∴中点四边形EFGH是平行四边形


(2)

四边形EFGH是菱形.

证明:如图2中,连接AC,BD.

∵∠APB=∠CPD,

∴∠APB+∠APD=∠CPD+∠APD

即∠APC=∠BPD,

在△APC和△BPD中,

∴△APC≌△BPD,

∴AC=BD

∵点E,F,G分别为边AB,BC,CD的中点,

∴EF= AC,FG= BD,

∵四边形EFGH是平行四边形,

∴四边形EFGH是菱形.


(3)

解:四边形EFGH是正方形.证明:如图2中,

设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.

∵△APC≌△BPD,

∴∠ACP=∠BDP,

∵∠DMO=∠CMP,

∴∠COD=∠CPD=90°,

∵EH∥BD,AC∥HG,

∴∠EHG=∠ENO=∠BOC=∠DOC=90°,

∵四边形EFGH是菱形,

∴四边形EFGH是正方形.


【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线,属于中考常考题型.
【考点精析】通过灵活运用平行四边形的判定与性质,掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】根据已知求值.
(1)已知3×9m×27m=316 , 求m的值.
(2)已知am=2,an=5,求a2m﹣3n的值.
(3)已知2x+5y﹣3=0,求4x32y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:a3÷a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解
材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:
梯形的中位线平行于两底,并且等于两底和的一半.
如图(1):在梯形ABCD中:AD∥BC
∵E、F是AB、CD的中点
∴EF∥AD∥BC
EF=(AD+BC)
材料二:经过三角形一边的中点与另一边平行的直线必平分第三边
如图(2):在△ABC中:
∵E是AB的中点,EF∥BC
∴F是AC的中点
如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°

请你运用所学知识,结合上述材料,解答下列问题.
(1)求证:EF=AC;
(2)若OD=,OC=5,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为(
A.2
B.4
C.4
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是( )
A.圆柱
B.圆锥
C.球
D.正方体

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是真命题的是(
A.同位角相等
B.相等的角是对顶角
C.同角的余角相等
D.过一点有且只有一条直线与已知直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解一元二次方程x2+8x+7=0,则方程可化为(
A.(x+4)2=9
B.(x﹣4)2=9
C.(x+8)2=23
D.(x﹣8)2=9

查看答案和解析>>

同步练习册答案