精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形ABCD中,∠DAB=B=C=D=90°,AD=BC=16,AB=CD=34.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,求DE的长.

【答案】464

【解析】

分两种情况EDC线段上EDC延长线上的一点进一步分析探讨得出答案即可

如图1

∵折叠∴△ADE≌△ADE∴∠ADE=D=90°.

∵∠ADB=90°,BD′、E三点共线

又∵ABD∽△BECAD′=BCABD≌△BECBE=AB=34

BD′===30DE=DE=3430=4

如图2

∵∠ABD+∠CBE=ABD+∠BAD″=90°,∴∠CBE=BAD.在ABD和△BEC∴△ABD≌△BECBE=AB=34DE=DE=34+30=64

综上所述DE=464

故答案为:464

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示yx之间的函数关系.

(1)甲、乙两地之间的距离为 千米;图中点B的实际意义是

(2)求线段BC所表示的yx之间的函数关系式,并写出自变量x的取值范围;

(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.

(1)求证:BD=CE;(2)求锐角∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家规定“中小学生每天在校体育活动时间不低于1小时(h)”,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.

请根据上述信息解答下列问题

(1)补全条形统计图;

(2)某市约有25000名初中学生,请你结合以上数据进行

①估计达到国家规定体育活动时间的人数是多少?

②如果要估算本市初中生每天在校体育活动时间是多少,你认为选择众数、中位数和平均数三个量中的哪个更合适?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ACB和△ECD都是等腰直角三角形,CA=CBCE=CDACB的顶点A在△ECD的斜边DE上.

1)求证:AE2+AD2=2AC2

2)如图2,若AE=3AC=,点FAD的中点,求出CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2 x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.

(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明遇到这样一个问题:

已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.

小明发现,可以设另一个因式为(x+n),得

x2﹣4x+m=(x+3)(x+n

x2﹣4x+mx2+(n+3)x+3n

利用方程组可以解决.

请回答:

另一个因式为   m的值为   

参考小明的方法,解决下面的问题:

已知二次三项式2x2+3xk有一个因式是(x﹣4),求另一个因式以及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.
(1)如图1,当四边形ABCD为正方形时,求m,n的值;

(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;

(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.

查看答案和解析>>

同步练习册答案