A. | 2$\sqrt{3}$a | B. | $\frac{\sqrt{3}}{2}$a | C. | $\sqrt{3}$a | D. | $\frac{a}{2}$ |
分析 由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的值最大,当CE⊥AB,即E为AB的中点时,EF的值最小.
解答 解:连接AC、CE、CF,如图所示:
∵四边形ABCD是边长为a的菱形,∠B=60°,
∴△ABC、△CAD都是边长为a的正三角形,
∴AB=BC=CD=AC=AD,∠CAE=∠ACB=∠ACD=∠CDF=60°,
∵AE+AF=a,
∴AE=a-AF=AD-AF=DE,
在△ACE和△DCF中,
$\left\{\begin{array}{l}{AE=DF}\\{∠CAE=∠CDF}\\{AC=DC}\end{array}\right.$,
∴△ACE≌△DCF(SAS),
∴∠ACE=∠DCF,
∴∠ACE+∠ACF=∠DCF+∠ACF,
∴∠ECF=∠ACD=60°,
∴△CEF是正三角形,
∴EF=CE=CF,
当动点E运动到点B或点A时,CE的最大值为a,
当CE⊥AB,即E为BD的中点时,CE的最小值为$\frac{\sqrt{3}}{2}$a,
∵EF=CE,
∴EF的最小值为$\frac{\sqrt{3}}{2}$a.
故选:B.
点评 此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△ACE≌△DCF是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com