精英家教网 > 初中数学 > 题目详情
7.(1)如图1:在△ABC中,AB=AC,AD⊥BC,DE⊥AB于点E,DF⊥AC于点F.证明:DE=DF.
(2)如图2,在△ABC中,AB=AC,AD⊥BC,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.

分析 (1)由等腰三角形的性质和角平分线的性质定理直接证明即可;
(2)利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.

解答 解:
(1)证明:∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC
∴DE=DF;
(2)证明:∵AB=AC,AD⊥BC
∴∠BAD=∠CAD,
∵DE平分∠ADB,DF平分和∠ADC,
∴∠ADE=∠ADF=45°,
在△AED和△AFD中,
$\left\{\begin{array}{l}{∠BAD=∠CAD}\\{AD=AD}\\{∠ADE=∠ADF}\end{array}\right.$,
∴△AED≌△AFD(ASA),
∴DE=DF.

点评 本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.关于x的方程2x-m=3的解是x=4,则m的值是5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解不等式组:$\left\{\begin{array}{l}x-1≥0\\ 4-2x>0\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.请把以下证明过程补充完整,并在下面的括号内填上推理理由:
已知:如图,∠1=∠2,∠A=∠D.
求证:∠B=∠C
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,对顶角相等
∴∠2=∠3,(等量代换)
∴AE∥FD同位角相等,两直线平行
∴∠A=∠BFD两直线平行,同位角相等
∵∠A=∠D(已知)
∴∠D=∠BFD(等量代换)
∴AB∥CD内错角相等,两直线平行
∴∠B=∠C两直线平行,内错角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列去括号运算中,正确的是(  )
A.a2-(a-2b+3c)=a2-a-2b+3cB.a+(-x+y-2)=a-x-y-2
C.(2a+b)-2(a2-b2)=2a+b-2a2+b2D.-(x+y)+(a-1)=-x-y+a

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在△ABC中,∠C=90°,下列选项中的关系式正确的是(  )
A.sinA=$\frac{AC}{AB}$B.cosB=$\frac{AC}{BC}$C.tanA=$\frac{BC}{AB}$D.AC=AB•cosA

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,△ABC的顶点A(-4,3),B(-2,-1),C(-1,1)均在正方形网格的格点上,画出△ABC关于y轴对称的△A1B1C1,并写出点A的对应点A1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=$\frac{1}{3}$,求sin2α的值.小娟是这样给小芸讲解的:
构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=$\frac{BC}{AB}$=$\frac{1}{3}$,可设BC=x,则AB=3x,….
【问题解决】
(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)
(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

同步练习册答案