精英家教网 > 初中数学 > 题目详情
某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如表:
类 别电视机洗衣机
进价(元/台)18001500
售价(元/台)20001600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)
(1)设商店购进电视机x台,则购进洗衣机(100-x)台,
根据题意得
x≥
1
2
(100-x)
1800x+1500(100-x)≤161800

解不等式组得33
1
3
≤x≤39
1
3

∵x取整数
∴x可以取34,35,36,37,38,39,
即购进电视机最少34台,最多39台,商店有6种进货方案;

(2)设商店销售完毕后获利为y元,根据题意得
y=(2000-1800)x+(1600-1500)(100-x)=100x+10000.
∵100>0,∴y随x增大而增大,
∴当x=39时,商店获利最多为13900元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读材料:
如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.
我们可得出一种计算三角形面积的新方法:S△ABC=
1
2
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
已知:直线l1:y=-2x+6与x轴交于点A,直线l2:y=x+3与y轴交于点B,直线l1、l2交于点C.
(1)建立平面直角坐标系,画出示意图(无需列表)并求出C点的坐标;
(2)利用阅读材料提供的方法求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1;
(1)求直线BC的解析式;
(2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由;
(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙二人骑自行车同时从张庄出发,沿同一路线去李庄.甲行驶20分钟因事耽误一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题:
(1)乙比甲晚多长时间到达李庄?
(2)甲因事耽误了多长时间?
(3)x为何值时,乙行驶的路程比甲行驶的路程多1千米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b,经过A(-1,3),B(-3,2)两点.
(1)画出函数y=kx+b的图象;
(2)求出k,b的值;
(3)当x=3时,函数的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

校运动会前,小明和小亮相约晨练跑步,小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人并行跑了2分钟后,决定进行长跑比赛,比赛过程中小明的速度始终是180米/分,小亮的速度始终是220米/分.两人之间的距离y(米)与小明离开家的时间t(分钟)之间的函数图象如图所示,下列说法:
①小明比赛前的速度为180米/分;
②小明和小亮家相距540米;
③小亮在跑步过程中速度始终保持不变;
④小明离家7分钟时两人之间的距离为80米;
⑤小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,再经过0.9分钟两人相遇,
其中一定正确的个数(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC的边BC长是10,BC边上的高是6,点D在BC运动,设BD长为x,请写出△ACD的面积y与x之间的函数关系式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某工程队要招聘甲乙两种工种的工人150名,甲乙两种工种工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的两倍,问甲乙两种工种的人数各聘______时可使得每月所付工资最少,最小值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.

查看答案和解析>>

同步练习册答案