19£®Èçͼ1£¬½«¾ØÐÎOABC·ÅÖÃÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÇÒA£¨3£¬0£©£¬C£¨0£¬3$\sqrt{3}$£©£®Å×ÎïÏßy=ax2+bx¹ýµãB£¬ÇÒÓëxÖáµÄÒ»¸ö½»µãΪD£¨6£¬0£©£®
£¨1£©Çóa£¬bµÄÖµ£®
£¨2£©ÈôµãPÊÇxÖáÉÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¬Á¬½ÓPA£¬PC£¬µ±¡÷PACÃæ»ý×î´óʱ£¬ÇóµãPµÄ×ø±ê£®
£¨3£©Èçͼ2£¬ÈôÏ߶ÎABÉÏÓÐÒ»¶¯µã£¬´ÓµãB³ö·¢£¬ÒÔijһËÙ¶ÈÔÈËÙÔ˶¯µ½Ä³Ò»Î»ÖÃQ´¦£¬È»ºóÒÔÔ­À´ËٶȵÄ2±¶£¬ÑØÏ߶ÎQOÔ˶¯µ½Ô­µãO´¦£®ÊÔÈ·¶¨µãQµÄλÖã¬Ê¹µÃ°´ÕÕÉÏÊöÒªÇóµ½´ïÔ­µãËùÓõÄʱ¼ä×î¶Ì£®

·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÐÔÖÊ£¬¿ÉµÃBµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝƽÐÐÓÚACÇÒÓëÅ×ÎïÏßÏàÇеÄÖ±Ïßµ½ACµÄ¾àÀë×î´ó£¬¿ÉµÃPÊÇƽÐÐÏßÓëÅ×ÎïÏßµÄΨһ½»µã£¬¸ù¾Ý½â·½³Ì×飬¿ÉµÃPµã×ø±ê£»Ò²¿ÉÒÔÀûÓÃÃæ»ý²î±íʾ¡÷PACµÄÃæ»ý£¬µÃ³öº¯Êý¹Øϵʽ£¬Çó×îÖµ£¬Ò²¿ÉÒÔÇó³öµãPµÄ×ø±ê£»
£¨3£©Á¬½ÓBD£¬¹ýO×÷OM¡ÍBDÓÚµãM£¬½»ABÓÚµãQ£¬½ÓÏÂÀ´Ö¤Ã÷¡ÏQBM=30¡ã£¬´Ó¶ø¿ÉµÃµ½´ÓµãQµ½AÓëµãQµ½µãOËùÓÃʱ¼äÏàͬ£¬´Ó¶ø¿ÉÈ·¶¨³öQµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ÓɾØÐÎOABC·ÅÖÃÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÇÒA£¨3£¬0£©£¬C£¨0£¬3$\sqrt{3}$£©£¬µÃ£º
Bµã×ø±êΪ£¨3£¬3$\sqrt{3}$£©£®
½«B¡¢Dµã×ø±ê´úÈ뺯Êý½âÎöʽ£¬µÃ£º
$\left\{\begin{array}{l}{9a+3b=3\sqrt{3}}\\{36a+6b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{\sqrt{3}}{3}}\\{b=2\sqrt{3}}\end{array}\right.$£¬
£¨2£©Èçͼ1£¬¹ýµãP×÷ƽÐÐÓÚACµÄÖ±Ïߣ¬´ËÖ±ÏßÓëÅ×ÎïÏß½öÓÐÒ»¸ö½»µãʱ£¬¡÷PACµÄÃæ»ý×î´ó£¬
¡ßA£¨3£¬0£©£¬C£¨0£¬3$\sqrt{3}$£©£¬
¡àÖ±ÏßACµÄ½âÎöʽΪ£ºy=-$\sqrt{3}$x+3$\sqrt{3}$£¬
Éè¹ýµãPµÄÖ±Ïß½âÎöʽΪy=-$\sqrt{3}$x+b£¬ÁªÁ¢Ö±ÏßÓÚÅ×ÎïÏß½âÎöʽ£¬µÃ$\left\{\begin{array}{l}{y=-\sqrt{3}x+b}\\{y=-\frac{\sqrt{3}}{3}{x}^{2}+2\sqrt{3}x}\end{array}\right.$£¬
ÕûÀí£¬µÃ$\frac{\sqrt{3}}{3}$x2-3$\sqrt{3}$x+b=0£¬
¡÷=81-4$\sqrt{3}$b=0£¬
½âµÃb=$\frac{27}{4}\sqrt{3}$£»
$\frac{\sqrt{3}}{3}$x2-3$\sqrt{3}$x+$\frac{27}{4}\sqrt{3}$=0£¬
½âµÃx1=x2=$\frac{9}{2}$£¬y=-$\sqrt{3}$¡Á$\frac{9}{2}$+$\frac{27}{4}\sqrt{3}$=$\frac{9\sqrt{3}}{4}$£¬
¼´Pµã×ø±êΪ£¨$\frac{9}{2}$£¬$\frac{9\sqrt{3}}{4}$£©£»
£¨3£©Èçͼ2£¬Á¬½ÓBD£¬¹ýO×÷OM¡ÍBDÓÚµãM£¬½»ABÓÚµãQ£¬
¡ßAD=3£¬AB=3$\sqrt{3}$£¬
¡à¡ÏQBM=30¡ã£¬
ÓÖ¡ßQM¡ÍBD£¬
¡à¡ÏQOA=30¡ã
¡àAQ=$\frac{1}{2}$OQ£¬
¡àÉ趯µãÔÚBQÉϵÄËÙ¶ÈΪ1£¬ÔòÔÚOQÉϵÄËÙ¶ÈΪ2£¬
¡à¶¯µãÔÚOQÉÏÔ˶¯µÄʱ¼äµÈÓÚ¶¯µãÒÔÔ­ËÙ¶ÈÔÚAQÉÏÔ˶¯µÄʱ¼ä£¬
¼´´ÓµãBÔ˶¯µ½Q£¬ÔÙÔ˶¯µ½O£¬Ï൱ÓÚÒÔÔ­ËٶȴÓBÔ˶¯µ½AµÄʱ¼ä£¬
¡àµ±OM¡ÍBDʱ£¬½»ABÓÚQ£¬ÕâʱµÄµãQ¾ÍÊÇËùÇóµÄµã£¬
tan30¡ã=$\frac{AQ}{AO}$=$\frac{\sqrt{3}}{3}$£¬
¡à$\frac{AQ}{3}$=$\frac{\sqrt{3}}{3}$£¬
¡àAQ=$\sqrt{3}$£¬
¡àQ£¨3£¬$\sqrt{3}$£©£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬¿¼²éÁËÀûÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÕâÊdz£¿¼ÌâÐÍ£¬ÒªÊìÁ·ÕÆÎÕ£»»¹¿¼²éÁËÀûÓÃ×îÖµÇóµãµÄ×ø±ê£¬°ÑÕâÒ»ÎÊÌâת»¯ÎªÀûÓ÷½³Ì×éÇó½»µãµÄÎÊÌ⣬Ҳ¿ÉÒÔÀûÓöþ´Îº¯ÊýµÄ¶¥µã×ø±ê£¨×îÖµ£©À´ÇóµãµÄ×ø±ê£»±¾Ìâ°Ñº¯ÊýºÍ¼¸ºÎÓлúµÄ½áºÏÔÚÒ»Æ𣬿´ËƼòµ¥£¬Æäʵ±È½Ï¸´ÔÓ£¬ÒªÈÏÕæÀí½âÌâÒ⣬Ҫ°Ñʱ¼äµÄ×îСֵÎÊÌâת»¯ÎªÏ߶εÄ×îСֵÀ´½â¾öÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬AE¡¢AFÊÇÏÒ£¬BCÊÇ¡ÑOµÄÇÐÏߣ¬¹ýµãA×÷AD£¬Ê¹¡ÏDAF=¡ÏAEF£®
£¨1£©Èçͼ£¨1£©£¬ÇóÖ¤£ºAD¡ÎBC£»
£¨2£©Èçͼ£¨2£©£¬ÈôAD=BC=AB£¬Á¬½ÓCD£¬ÑÓ³¤AF½»CDÓÚG£¬Á¬½ÓCF£¬ÈôGΪCDÖе㣬ÇóÖ¤£ºCF=CB£»
£¨3£©Èçͼ£¨3£©£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬µãIÔÚÏ߶ÎFGÉÏ£¬ÇÒIF=AF£¬µãPÔÚ$\widehat{BE}$ÉÏ£¬Á¬½ÓBP²¢ÑÓ³¤µ½L£¬Ê¹PL=PB£¬Á¬½ÓAL£¬ÑÓ³¤EA¡¢BI½»ÓÚµãK£¬ÒÑÖª¡ÏBAK+¡ÏABL=180¡ã£¬¡ÏABI+¡ÏBAL=90¡ã£¬¡ÑOµÄ°ë¾¶Îª$\frac{{\sqrt{10}}}{2}$£¬ÇóËıßÐÎALBKµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£ºÓÃÒ»¶Î³¤Îª30mµÄÀé°ÊΧ³ÉÒ»±ß¿¿Ç½µÄ¾ØÐβËÔ°£¬Ç½³¤Îª18m£¬Éè²ËÔ°µÄ¿íABΪxm£¬Ãæ»ýΪSm2£®
£¨1£©ÇóSÓëxµÄº¯Êý¹Øϵʽ£»²¢Ö±½Óд³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£»
£¨2£©Õâ¸ö¾ØÐεij¤¡¢¿í¸÷Ϊ¶àÉÙʱ£¬²ËÔ°µÄÃæ»ý×î´ó£¬×î´óÃæ»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚÒ»Ã濿ǽµÄ¿ÕµØÉÌÓó¤Îª24Ã×µÄÀé°Ê£¬Î§³ÉÖмä¸ôÓжþµÀÀé°ÊµÄ³¤·½Ðλ¨ÆÔ£®É軨ÆԵĿíABΪxÃ×£¬Ãæ»ýΪSƽ·½Ã×£®
£¨1£©ÇóSÓëxµÄº¯Êý¹Øϵʽ¼°×Ô±äÁ¿µÄÈ¡Öµ·¶Î§£»
£¨2£©ÒÑ֪ǽµÄ×î´ó¿ÉÓó¤¶ÈΪ8Ã×£»
¢ÙÇóËùΧ³É»¨ÆÔµÄ×î´óÃæ»ý£»
¢ÚÈôËùΧ»¨ÆÔµÄÃæ»ý²»Ð¡ÓÚ20ƽ·½Ã×£¬ÇëÖ±½Óд³öxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ð¡Ã÷¼Ò³Ð°üÁËÒ»¸ö¾ØÐÎÓã³Ø£¬ÒÑÖªÆäÃæ»ýΪ48m2£¬Æä¶Ô½ÇÏß³¤Îª10m£¬Îª½¨Õ¤À¸£¬Òª¼ÆËãÕâ¸ö¾ØÐÎÓã³ØµÄÖܳ¤£¬Çë°ïÖúСÃ÷ËãÒ»ËãÕâ¸ö¾ØÐεÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É̳¡ÏúÊÛijÖÖÉÌÆ·£¬½ñÄêËÄÔ·ÝÏúÊÛÁËÈô¸É¼þ£¬¹²»ñëÀûÈó3ÍòÔª£¨Ã¿¼þÉÌÆ·µÄëÀûÈó=ÿ¼þÉÌÆ·µÄÏúÊÛ¼Û¸ñ-ÿ¼þÉÌÆ·µÄ³É±¾¼Û¸ñ£©£®ÎåÔ·ÝÉ̳¡Ôڳɱ¾¼Û¸ñ²»±äµÄÇé¿öÏ£¬°ÑÕâÖÖÉÌÆ·µÄÿ¼þÏúÊÛ¼Û½µµÍÁË4Ôª£¬µ«ÏúÊÛÁ¿±ÈËÄÔÂÔö¼ÓÁË500¼þ£¬´Ó¶øËù»ñëÀûÈó±ÈËÄÔ·ÝÔö¼ÓÁË2ǧԪ£®Îʵ÷¼ÛÇ°£¬ÏúÊÛÿ¼þÉÌÆ·µÄëÀûÈóÊǶàÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª£ºÔÚ?ABCDÖУ¬¡ÏBAD=45¡ã£¬AB=BD£¬EΪBCÉÏÒ»µã£¬Á¬½ÓAE½»BDÓÚF£¬¹ýµãD×÷DG¡ÍAEÓÚG£¬ÑÓ³¤DG½»BCÓÚH

£¨1£©Èçͼ1£¬ÈôµãEÓëµãCÖغϣ¬ÇÒAF=$\sqrt{5}$£¬ÇóADµÄ³¤£»
£¨2£©Èçͼ2£¬Á¬½ÓFH£¬ÇóÖ¤£º¡ÏAFB=¡ÏHFB£»
£¨3£©Èçͼ3£¬Á¬½ÓAH½»BFÓÚM£¬µ±MΪBFµÄÖеãʱ£¬ÇëÖ±½Óд³öAFÓëFHµÄÊýÁ¿¹Øϵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¹ú¼Ò¹æ¶¨ÌåÖʽ¡¿µ×´¿ö·ÖΪÓÅÐã¡¢Á¼ºÃ¡¢ºÏ¸ñºÍ²»ºÏ¸ñËÄÖֵȼ¶£®ÎªÁËÁ˽âijµØÇø10000Ãû³õÖÐѧÉúµÄÌåÖʽ¡¿µ×´¿ö£¬Ä³Ð£ÊýѧÐËȤС×é´Ó¸ÃµØÇøÆß¡¢°Ë¡¢¾ÅÄ꼶Ëæ»ú³éÈ¡Á˹²500ÃûѧÉúÊý¾Ý½øÐÐÕûÀí·ÖÎö£¬ËûÃǶÔÆäÖÐÌåÖʽ¡¿µÎªÓÅÐãµÄÈËÊý×öÁËÒÔÏ·ÖÎö£º

£¨1£©Ð´³ö±¾´ÎËæ»ú³éÈ¡µÄÆßÄ꼶ÈËÊým=200£»
£¨2£©²¹È«ÌõÐÎͳ¼Æͼ£»
£¨3£©¸ù¾Ý³éÑùµ÷²éµÄ½á¹û£¬¹À¼Æ¸ÃµØÇø10000Ãû³õÖÐѧÉúÌåÖʽ¡¿µ×´¿öΪÓÅÐãµÄÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼×¡¢ÒÒÁ½¸öµç×Ó³§ÔÚ¹ã¸æÖж¼Éù³Æ£¬ËûÃǵÄijÖÖµç×Ó²úÆ·ÔÚÕý³£Çé¿öϵÄʹÓÃÊÙÃü¶¼ÊÇ5Ä꣬¾­Öʼ첿ÃŶÔÕâÁ½¼ÒÏúÊ۵IJúÆ·µÄʹÓÃÊÙÃü½øÐиú×Ùµ÷²é£¬Í³¼Æ½á¹ûÈçÏ£º£¨µ¥Î»£ºÄ꣩
¼×³§£º3¡¢4¡¢5¡¢6¡¢7
ÒÒ³§£º4¡¢4¡¢5¡¢6¡¢6
£¨1£©·Ö±ðÇó³ö¼×³§¡¢ÒÒ³§µÄijÖÖµç×Ó²úÆ·ÔÚÕý³£Çé¿öϵÄʹÓÃÊÙÃüµÄƽ¾ùÊýºÍ·½²î£»
£¨2£©Èç¹ûÄúÊǹ˿ͣ¬Äã»áÑ¡¹ºÄļҵç×Ó³§µÄ²úÆ·£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸