ÏÈÔĶÁÏÂÁÐ֪ʶ£¬È»ºó½â´ðÏÂÃæÁ½¸öÎÊÌ⣺
º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ×î¸ß´ÎÖ¸ÊýÊÇ2µÄ·½³Ì£¬½Ð×öÒ»Ôª¶þ´Î·½³Ì£¬È磺.
ÎÒÃÇ°ÑËüµÄÒ»°ãÐÎʽ¼Ç×÷£º(a¡¢b¡¢c±íʾÒÑÖªÁ¿£¬ÊÇδ֪Êý£¬a¡Ù0)£¬ËüµÄ½âµÄÇé¿öÊÇ£º
¢Ù µ±Ê±£¬·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄ½â£»
¢Ú µ±Ê±£¬·½³ÌÓÐÁ½¸öÏàµÈµÄ½â£¨¼´Ò»¸ö½â£©£»
¢Û µ±Ê±£¬·½³ÌûÓн⣻
£¨1£©Ò»Ôª¶þ´Î·½³ÌÓм¸¸ö½â£¿ÎªÊ²Ã´£¿
£¨2£©µ±È¡ºÎֵʱ£¬¹ØÓÚµÄÒ»Ôª¶þ´Î·½³ÌûÓн⣿

£¨1£©ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
¡ß2x2-3x+1=0ÖÐa=2£¬b=--3£¬c=1£¬
¡à¡÷=b2-4ac=£¨-3£©2-4¡Á2¡Á1=-1£¾0£¬
¡à·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
£¨2£©¡ßx2-2x+£¨m-1£©=0ÖÐa=1£¬b=-2£¬c=m-1£¬
¡à¡÷=b2-4ac=£¨-2£©2-4¡Á1¡Á£¨m-1£©=8-4m£¼0£¬
½âµÃm£¾2£¬
¼´m£¾2£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-2x+£¨m-1£©=0Î޽⣮

½âÎö

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

24¡¢ÏÈÔĶÁÏÂÁÐ֪ʶ£¬È»ºó½â´ðÎÊÌ⣺
º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ×î¸ß´ÎÖ¸ÊýÊÇ2µÄ·½³Ì£¬½Ð×öÒ»Ôª¶þ´Î·½³Ì£¬È磺x2-2x+1=0£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡¢b¡¢c±íʾÒÑÖªÁ¿£¬a¡Ù0£©µÄ½âµÄÇé¿öÊÇ£º
¢Ùµ±b2-4ac£¾0ʱ£¬·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄ½â£»
¢Úµ±b2-4ac=0ʱ£¬·½³ÌÓÐÁ½¸öÏàµÈµÄ½â£¨¼´Ò»¸ö½â£©£»
¢Ûµ±b2-4ac£¼0ʱ£¬·½³ÌûÓн⣮
£¨1£©Ò»Ôª¶þ´Î·½³Ì2x2-4x+5=0Óм¸¸ö½â£¿ÎªÊ²Ã´£¿
£¨2£©µ±aÈ¡ºÎֵʱ£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-2x+£¨a-2£©=0ÓÐÁ½¸ö²»ÏàµÈµÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÁÐ֪ʶ£¬È»ºó½â´ðÏÂÃæÁ½¸öÎÊÌ⣺
º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ×î¸ß´ÎÖ¸ÊýÊÇ2µÄ·½³Ì£¬½Ð×öÒ»Ôª¶þ´Î·½³Ì£¬È磺x2-2x+1=0£®ÎÒÃÇ°ÑËüµÄÒ»°ãÐÎʽ¼Ç×÷£ºax2+bx+c=0£¨a¡¢b¡¢c±íʾÒÑÖªÁ¿£¬xÊÇδ֪Êý£¬a¡Ù0£©£¬ËüµÄ½âµÄÇé¿öÊÇ£º
¢Ùµ±b2-4ac£¾0ʱ£¬·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄ½â£»
¢Úµ±b2-4ac=0ʱ£¬·½³ÌÓÐÁ½¸öÏàµÈµÄ½â£¨¼´Ò»¸ö½â£©£»
¢Ûµ±b2-4ac£¼0ʱ£¬·½³ÌûÓн⣻
£¨1£©Ò»Ôª¶þ´Î·½³Ì2x2-3x+1=0Óм¸¸ö½â£¿ÎªÊ²Ã´£¿
£¨2£©µ±mÈ¡ºÎֵʱ£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-2x+£¨m-1£©=0ûÓн⣿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2014½ì°²»ÕºÏ·Ê¹Å¶¼ÖÐѧÆßÄ꼶ÏÂÆÚÖп¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁÏÂÁÐ֪ʶ£¬È»ºó½â´ðÏÂÃæÁ½¸öÎÊÌ⣺

º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ×î¸ß´ÎÖ¸ÊýÊÇ2µÄ·½³Ì£¬½Ð×öÒ»Ôª¶þ´Î·½³Ì£¬È磺.

ÎÒÃÇ°ÑËüµÄÒ»°ãÐÎʽ¼Ç×÷£º(a¡¢b¡¢c±íʾÒÑÖªÁ¿£¬ÊÇδ֪Êý£¬a¡Ù0)£¬ËüµÄ½âµÄÇé¿öÊÇ£º

¢Ù µ±Ê±£¬·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄ½â£»

¢Ú µ±Ê±£¬·½³ÌÓÐÁ½¸öÏàµÈµÄ½â£¨¼´Ò»¸ö½â£©£»

¢Û µ±Ê±£¬·½³ÌûÓн⣻

£¨1£©Ò»Ôª¶þ´Î·½³ÌÓм¸¸ö½â£¿ÎªÊ²Ã´£¿

£¨2£©µ±È¡ºÎֵʱ£¬¹ØÓÚµÄÒ»Ôª¶þ´Î·½³ÌûÓн⣿

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÏÈÔĶÁÏÂÁÐ֪ʶ£¬È»ºó½â´ðÏÂÃæÁ½¸öÎÊÌ⣺
º¬ÓÐÒ»¸öδ֪Êý£¬²¢ÇÒδ֪ÊýµÄ×î¸ß´ÎÖ¸ÊýÊÇ2µÄ·½³Ì£¬½Ð×öÒ»Ôª¶þ´Î·½³Ì£¬È磺x2-2x+1=0£®ÎÒÃÇ°ÑËüµÄÒ»°ãÐÎʽ¼Ç×÷£ºax2+bx+c=0£¨a¡¢b¡¢c±íʾÒÑÖªÁ¿£¬xÊÇδ֪Êý£¬a¡Ù0£©£¬ËüµÄ½âµÄÇé¿öÊÇ£º
¢Ùµ±b2-4ac£¾0ʱ£¬·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄ½â£»
¢Úµ±b2-4ac=0ʱ£¬·½³ÌÓÐÁ½¸öÏàµÈµÄ½â£¨¼´Ò»¸ö½â£©£»
¢Ûµ±b2-4ac£¼0ʱ£¬·½³ÌûÓн⣻
£¨1£©Ò»Ôª¶þ´Î·½³Ì2x2-3x+1=0Óм¸¸ö½â£¿ÎªÊ²Ã´£¿
£¨2£©µ±mÈ¡ºÎֵʱ£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-2x+£¨m-1£©=0ûÓн⣿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸