精英家教网 > 初中数学 > 题目详情
9. 如图,一次函数y=kx+b的图象与反比例函数y=$\frac{m}{x}$的图象交于A(-3,1),B(2,n)两点,交x轴、y轴于D、C两点.
(1)求上述反比例函数的解析式和点B的坐标;
(2)连接AO,BO,求出△AOB的面积;
(3)请由图象直接写出,当x满足什么条件时,一次函数的值小于反比例函数的值?

分析 (1)首先根据A点坐标求出反比例函数,然后将B点代入可求出B点坐标,再将A和B代入一次函数中可求出一次函数的表达式.
(2)可将△AOB分成3部分,△AOD、△ODC和△OCB,利用一次函数求出C点和D点的坐标,然后分别求出3个三角形的面积相加即可.
(3)观察图象,只要反比例函数的图象在一次函数图象上方即可.

解答 解:(1)把x=-3,y=1代入y=$\frac{m}{x}$得:m=-3
∴反比例函数的解析式为y=-$\frac{3}{x}$,
把x=2,y=n代入y=-$\frac{3}{x}$得n=-$\frac{3}{2}$
把x=-3,y=1与x=2,y=-$\frac{3}{2}$分别代入y=kx+b
得 $\left\{\begin{array}{l}{-3k+b=1}\\{2k+b=-\frac{3}{2}}\end{array}\right.$,
解得 $\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$,
∴一次函数的解析式为y=-$\frac{1}{2}$x-$\frac{1}{2}$

(2)由一次函数的解析式为y=-$\frac{1}{2}$x-$\frac{1}{2}$得C点的坐标为(0,-$\frac{1}{2}$),
∴OC=$\frac{1}{2}$,
则S△AOB=S△AOC+S△BOC=$\frac{1}{2}$OC(|xB|+|xA|)=$\frac{1}{2}$×$\frac{1}{2}$×5=$\frac{5}{4}$;

(3)观察图象可知当-3<x<0或x>2时,一次函数的值小于反比例函数的值.

点评 本题考查反比例函数与一次函数的交点问题、三角形的面积等知识,解题的关键是熟练掌握待定系数法,学会利用函数图象比较函数值的大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.计算:
(1)$\frac{{a}^{2}}{a+b}$-$\frac{{b}^{2}}{a+b}$;
(2)(-$\frac{b}{2a}$)2•$\frac{6a}{{b}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如果某函数的图象如图所示,那么y随x的增大而(  )
A.增大B.减小
C.不变D.有时增大有时减小

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学记数法表示(  )
A.2.5×10-7B.25×10-4C.25×10-7D.025×10-5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.阅读下列材料:
如图1,在线段AB上找一点C(AC>BC),若BC:AC=AC:AB,则称点C为线段AB的黄金分割点,这时比值为$\frac{\sqrt{5}-1}{2}$≈0.618,人们把$\frac{\sqrt{5}-1}{2}$称为黄金分割数.长期以来,很多人都认为黄金分割数是一个很特别的数,我国著名数学家华罗庚先生所推广的优选法中,就有一种0.618法应用了黄金分割数.
我们可以这样作图找到已知线段的黄金分割点:如图2,在数轴上点O表示数0,点E表示数2,过点E作EF⊥OE,且EF=$\frac{1}{2}$OE,连接OF;以F为圆心,EF为半径作弧,交OF于H;再以O为圆心,OH为半径作弧,交OE于点P,则点P就是线段OE的黄金分割点.
根据材料回答下列问题:
(1)线段OP长为$\sqrt{5}-1$,点P在数轴上表示的数为$\sqrt{5}$-1;
(2)在(1)中计算线段OP长的依据是勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列计算中,正确的是(  )
A.(-3a2b)3=27a6b3B.(a43=a7C.a12÷a4=a8D.a2•a4=a8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.y=ax2+bx+c的图象如图所示,则下面结论中正确的结论有(  )
①ac<0;②ab>0;③2a<-b;④a+c>b;⑤4a+2b+c>0;⑥a+b+c>0.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,左边是一个立体图形,它可以看作是由(  )中的平面图形绕直线l旋转一周得到的.
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列各式中,正确的是(  )
A.$\sqrt{25}$=±5B.-$\sqrt{16}$=-4C.$\sqrt{4\frac{1}{4}}$=2$\frac{1}{2}$D.$\sqrt{{5}^{2}}$=$\sqrt{5}$

查看答案和解析>>

同步练习册答案