ͬѧÃÇѧ¹ýÓÐÀíÊý¼õ·¨¿ÉÒÔת»¯ÎªÓÐÀíÊý¼Ó·¨À´ÔËË㣬ÓÐÀíÊý³ý·¨¿ÉÒÔת»¯ÎªÓÐÀíÊý³Ë·¨À´ÔËË㣮ÆäʵÕâÖÖת»¯µÄÊýѧ·½·¨£¬ÔÚѧϰÊýѧʱ»á¾­³£Óõ½£¬Í¨¹ýת»¯ÎÒÃÇ¿ÉÒÔ°ÑÒ»¸ö¸´ÔÓÎÊÌâת»¯ÎªÒ»¸ö¼òµ¥ÎÊÌâÀ´½â¾ö£®
ÀýÈ磺¼ÆËã
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
1
4¡Á5

´ËÌâÎÒÃÇ°´ÕÕ³£¹æµÄÔËËã·½·¨¼ÆËã±È½Ï¸´ÔÓ£¬µ«Èç¹û²ÉÓÃÏÂÃæµÄ·½·¨°Ñ³Ë·¨×ª»¯Îª¼õ·¨ºó¼ÆËã¾Í±äµÃ·Ç³£¼òµ¥£®
·ÖÎö·½·¨£ºÒòΪ
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
1
4¡Á5
=
1
4
-
1
5
£¬
ËùÒÔ£¬½«ÒÔÉÏ4¸öµÈʽÁ½±ß·Ö±ðÏà¼Ó¼´¿ÉµÃµ½½á¹û£¬½â·¨ÈçÏ£º
½â£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
1
4¡Á5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=1-
1
5
=
4
5

£¨1£©Ó¦ÓÃÉÏÃæµÄ·½·¨¼ÆË㣺
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2011¡Á2012
£»
£¨2£©¼ÆË㣺
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=
n
n+1
n
n+1
£¨Ö»Ìî´ð°¸£©£®
£¨3£©Àà±ÈÓ¦ÓÃÉÏÃæµÄ·½·¨Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2010¡Á2012
£®
·ÖÎö£º£¨1£©ÀûÓÃÌâÖеķ½·¨µÃµ½
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2011¡Á2012
=£¨1-
1
2
£©+£¨
1
2
-
1
3
£©+£¨
1
3
-
1
4
£©+¡­+£¨
1
2011
-
1
2012
£©£¬È»ºóÈ¥À¨ºÅºÏ²¢¼´¿É£»
£¨2£©Ó루1£©Ò»ÑùµÃµ½
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+¡­+
1
n
-
1
n+1
£¬È»ºó½øÐкϲ¢£»
£¨3£©°Ñ
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2010¡Á2012
±äÐÎΪ£¨2£©ÖеÄÐÎʽµÃµ½
1
4
[£¨1-
1
2
£©+£¨
1
2
-
1
3
£©+£¨
1
3
-
1
4
£©+¡­+£¨
1
1005
-
1
1006
£©]£¬È»ºóÀûÓã¨2£©Öеķ½·¨¼ÆË㣮
½â´ð£º½â£º£¨1£©
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2011¡Á2012
=£¨1-
1
2
£©+£¨
1
2
-
1
3
£©+£¨
1
3
-
1
4
£©+¡­+£¨
1
2011
-
1
2012
£©=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+¡­+
1
2011
-
1
2012
=1-
1
2012
=
2011
2012
£»

£¨2£©
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+¡­+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
£»

£¨3£©
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2010¡Á2012
=
1
4
[£¨1-
1
2
£©+£¨
1
2
-
1
3
£©+£¨
1
3
-
1
4
£©+¡­+£¨
1
1005
-
1
1006
£©]=
1
4
¡Á£¨1-
1
1006
£©=
1005
4024
£®
µãÆÀ£º±¾Ì⿼²éÁËÓÐÀíÊýµÄ»ìºÏÔËË㣺ÏÈËã³Ë·½£¬ÔÙËã³Ë³ý£¬È»ºó½øÐмӼõÔËË㣻ÓÐÀ¨ºÅÏÈËãÀ¨ºÅ£®Ò²¿¼²éÁËÔĶÁÀí½âÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

ͬ²½Á·Ï°²á´ð°¸