精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的对角线AC、BD相交于O.
(1)(图1)若E为AC上一点,过A作AG⊥EB于G,AG、BD交于F,求证:OE=OF;
(2)(图2)若E为AC延长线上一点,AG⊥EB交EB的延长线于G,AG的延长线交DB的延长线于F,其他条件不变,OE=OF还成立吗?若成立,请予以证明;若不成立,请说明理由.
精英家教网
分析:根据正方形的性质利用ASA判定△AOF≌△BOE,根据全等三角形的对应边相等得到OE=OF;同理第二问也一样.
解答:精英家教网证明:(1)如图(1)
正方形ABCD中,
∴AO=BO,∠AOF=∠BOE=90°,
∴∠OBE+∠BEO=90°,
∵AG⊥EB,
∴∠AGE=90°,
∴∠GAE+∠AEG=90°,
∴∠OBE=∠OAF,
在△AOF和△BOE中
∠AOF=∠BOE
AO=BO
∠OAF=∠OBE

∴△AOF≌△BOE(ASA),
∴OE=OF.

(2)OE=OF仍然成立.
理由:如图(2)
正方形ABCD中,∴AO=BO,∠AOF=∠BOE=90°,
∴∠FAO+∠F=90°,
∵AG⊥EB,∴∠AGE=90°,
∴∠GAE+∠E=90°,
∴∠E=∠F,
在△AOF和△BOE中
∠AOF=∠BOE
∠E=∠F
AO=BO

∴△AOF≌△BOE(AAS),
∴OE=OF.
所以结论仍然成立.
点评:此题主要考查学生对正方形的性质及全等三角形的判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案