精英家教网 > 初中数学 > 题目详情

【题目】如图,点A在双曲线yx0)上,点B在双曲线yx0)上,且ABx轴,BCy轴,点Cx轴上,则ABC的面积为_____

【答案】1.5

【解析】

AEx轴于EBFx轴于F,延长BAy轴于点D,如图,根据反比例函数比例系数k的几何意义得S矩形AEOD1S矩形BFOD4,于是得到S矩形AEFB3,然后根据矩形的性质和三角形面积公式易得SABCSFAB1.5

解:作AEx轴于EBFx轴于F,延长BAy轴于点D,如图,

ABx轴,

S矩形AEOD1S矩形BFOD4

S矩形AEFB413

SFAB1.5

SABCSFAB1.5

故答案为1.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,RtAOB的直角边OAx轴上,OA=2AB=1,将RtAOB绕点O逆时针旋转90°得到RtCOD,抛物线经过BD两点.

1)求二次函数的解析式;

2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度(单位:)与足球被踢出后经过的时间(单位:)之间的关系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列结论:足球距离地面的最大高度为足球飞行路线的对称轴是直线足球被踢出时落地;足球被踢出时,距离地面的高度是.

其中正确结论的个数是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个钢筋三角架三边长分别为20cm50cm60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).

A. 一种 B. 两种 C. 三种 D. 四种

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点Ax轴的正半轴上,顶点Cy轴的正半轴上,点B在双曲线x0)上,点D在双曲线x0)上,点D的坐标是 33

1)求k的值;

2)求点A和点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家海洋局将中国钓鱼岛最高峰命名为高华峰,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732=1.414

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B在线段AC上,点DEAC同侧,∠A=∠C=90°BD⊥BEAD=BC

(1)求证:AC=AD+CE

(2)AD=3CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q

(i)当点PAB两点不重合时,求的值;

(ii)当点PA点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.

(1)求甲选择A部电影的概率;

(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)

查看答案和解析>>

同步练习册答案